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Pranab K. Sen University of North Carolina at Chapel Hill, US

Julio Singer Universidade de São Paulo, Brazil

Milan Stehlik Johannes Kepler University, Austria

Alejandra Tapia Universidad Católica del Maule, Chile
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Abstract

Options pricing models, which consider asset-objects following a geometric Brownian
motion, such as derivations from the traditional Black-Scholes model, assume the volatil-
ity of asset-objects to be constant over time. In addition, the normal distribution is the
basement of the joint distribution for the case of bivariate options. In this work, we
consider GARCH-in-mean models with asymmetric variance specifications to model the
volatility of the assets-objects under the risk-neutral dynamics. Moreover, the copula
functions model the joint distribution, with the objective of capturing non-linear, lin-
ear and tails associations between the assets. We provide a methodology to describe
a more realistic pricing option. To illustrate the methodology, we use stocks from two
Brazilian companies. Confronting the results obtained with the classic model, which is
an extension of the Black-Scholes model, we note that considering constant volatility
over time underpricing the options, especially in-the-money options. Overall, the con-
tributions of the proposed methodology are as follows. Using the best copula makes the
model more suitable. Extension to marginal models, which consider asymmetry, makes
joint modeling more flexible and realistic. Due to the adequate marginal and joint fit-
ting, in addition to the values obtained with the classical consolidated model, there are
arguments to believe that the di↵erences obtained between the best models, through
the copulas and the extension of the conventional method, are improvements in the
calculation of the fair value. The empirical relevance of such alternatives is apparent
given the evidence of non-joint-normality in financial emerging markets. In essence, the
entire approach may be generalized to any number of time-series of option pricing.

Keywords: Black-Scholes model · Copulas · GARCH models · Pricing.

Mathematics Subject Classification: Primary 62J99 · Secondary 62M20.

1. Introduction

Multivariate options are excellent tools to manage a portfolio’s risk. The first works that
had as objective the pricing of options in the univariate case were Black and Scholes (1973)
and Merton (1973). Through these works, other authors have used the same theory, that
is, asset-objects follow a Brownian geometric motion and have proposed bi and multivari-
ate models, such as Stulz (1982), Margrabe (1978), Johnson (1987), Nelsen (2006) and
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Shimko (1994). However, models derived from Brownian geometric motion methods have
the assumptions that the volatilities of the assets are constant over time.
To carry out the pricing with more realistic assumptions, researchers have developed

other models. For instance, we use the generalized autoregressive conditional heteroskedas-
ticity (GARCH) family of models, because of its ability to incorporate the stylized facts
about asset return dynamics. This kind of modeling is popular in economics and finance
(Almeida e Hotta, 2014). Furthermore, with Black-Scholes (BS) model assumptions, any
contingent claim can be perfectly replicated by its underlying asset and a riskless bond,
so the price of a contingent claim is merely the cost of the replicating portfolio. However,
using GARCH-type models, it is generally not possible to construct a perfect replicating
portfolio, as the volatility of asset returns is permitted to vary over time. It is necessary to
define a risk-neutral measure to use the GARCH-type models to consider a general market
equilibrium (Liu, Li and Ng, 2015).
The model of Duan (1995) derived a measure of risk-neutral through the standard

GARCH model, which the author showed the potential of it concerning the Black-Scholes
approach. However, one of the main limitations of the standard GARCH model is the
inability to incorporate the e↵ect of asymmetry caused by unplanned returns (Nelsen,
1991). Introduced by Black (1976), this e↵ect implies that volatility tends to grow more
when there is an unanticipated drop in returns (that is, bad news) than when there is an
unanticipated increase of the same magnitude in returns (that is, good news). This e↵ect,
also known as a leverage e↵ect, has been included in the GARCH-type models, such as the
exponential GARCH (EGARCH), the non-linear asymmetric GARCH (NGARCH) and
the Glosten, Jagannathan, and Runkle GARCH (GJR-GARCH) models. It can be used
to price options by deriving their risk-neutral measure.
Furthermore, to understand the price behavior of a multivariate option, it is necessary to

use tools that accommodate the co-movements between its underlying processes. A primary
tool that is widely used by the methods derived from the traditional Black-Scholes model
is the multivariate normal distribution modeling. However, the use of such an approach
implies in linear associations as a measure of dependence between the assets. However,
empirical evidence presents that a real association between financial series is much more
complex (Lopes and Pessanha, 2018).
Therefore, this paper aims to price bivariate options by overcoming two of the above

constraints of the classical approach, where asset-objects are modeled marginally by deriv-
ing their risk-neutral considering the GARCH, EGARCH, NGARCH and GJR-GARCH
models, with copula functions modeling the joint distribution models, with the objective
of capturing linear, non-linear and tails dependence. The entire methodology described
here may be extended to any multivariate case.
An innovative feature of the present work is the comparison among methodologies, where

we consider marginal processes that capture the e↵ect of asymmetry, usually present in
financial series. A second point is the performance of a simulation study of the pricing
models with the purpose of verifying the good fit of the models used in the literature. It is
highlighted as a third point the comparison of the methodology exposed to the standard
method, extended from the Black-Scholes model to the bivariate case. The implementa-
tion of such methods in the Brazilian stock market, which is characterized as a volatile
and unstable market concerning developed markets. Then, compared with the previous
papers, the approach in the present paper makes the dynamic pricing more reasonable and
tractable. The paper organization follows. Section 2 presents the conceptual framework
and the models. In Section 3, we provide the bivariate model methodology and the infer-
ence procedures. In Section 4, the results of the proposed method under an artificial and
real data sets are illustrated. Finally, Section 5 ends the paper with concluding remarks.
Some technical details about di↵erent copulas are presented in the appendix.
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2. Conceptual Framework and Model Specification

In this section, we present option pricing, the GARCH-in-mean specification and risk-
neutral with GARCH-in-mean process.

2.1 Option pricing

A European option call on the maximum of two risky assets (call-on-max) is defined based
on the maximum price between two assets. The payo↵ function of this option is given by

g(S(T )) = max[max(S1(T ), S2(T ))�K, 0],

where Si is the price of the ith asset, for i = 1, 2, at the maturity date T and K is the
strike price or exercise price.
To introduce heteroscedasticity, we use the fundamental theorem of asset pricing (Del-

baen and Schachermayer, 1994). This theorem states that once the stock prices S1(T )
and S2(T ) are free from arbitrage and present in a complete market (Hull, 1992), there
is a measure of probability such that the discounted price of the payo↵ function,
e�r(T�t)

g(S1(T ), S2(T )), is a martingale under and is equivalent to the real world
probability measure . Therefore, we define the following definition to perform the pricing.

Definition 1. Let S1 and S2 be two stocks traded in a complete and free arbitrary
market. In addition, be t the present date, T the maturity date and r the fixed risk-
free rate yield. Then, the option price considering the payo↵ function g(S1, S2) =
max[max(S1(T ), S2(T ))�K, 0] is given by

v(t, S1, S2) = e�r(T�t)E [max[max(S1(T ), S2(T ))�K, 0]|Ft]

= e�r(T�t)
Z 1

0

Z 1

0
max[max(S1(T ), S2(T ))�K, 0]fS1,S2

(x1, x2)dx1dx2,

where fS1,S2
is the joint density function of two measures under neutral risk probability

, which in this work is modeled by copula functions, and Ft is a filtering containing all
information about the assets up to time t.

Now, we express the joint density function using the marginal densities fS1
(x1) and

fS2
(x2) by means of copula functions expressed as

fS1,S2
= c (FS1

, FS2
)fS1

(x1)fS2
(x2),

where c = @
2
C (x1, x2)/@x1@x2 and C is a copula function.

Copulas are useful tools for constructing joint distributions (Sharifonnasabi, Alamatsaz
and Kazemi, 2018). That is, copula is a multidimensional distribution function in which
the marginal distributions are uniform in [0, 1]. A bivariate copula is a function C : I2 �!
I 2 [0, 1] that satisfies the following conditions: C(x1, 0) = C(0, x1) = 0 and C(x1, 1) =
C(1, x1) = x1, x1 2 I and the 2-increasing condition C(u2, v2)�C(u1, v2)�C(u2, v1) +
C(u1, v1) � 0, for all u1, u2, v1 and v2 2 [0, 1] such u1  u2 and v1  v2.
One of the most famous theorems in copula theory is the Sklar theorem. According to

Sklar’s theorem (Sklar, 1959), any bivariate cumulative distribution HS1,S2
can be repre-

sented as a function of the marginal distributions FS1
and FS2

. In addition, whether the
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marginal distributions are continuous, the copula exists, is unique and given by

HS1,S2
(x1, x2) = C(FS1

(x1), FS2
(x2)),

where C(u, v) = P (U  u, V  v), U = FS1
(x1) and V = FS2

(x2).
In the case of continuous and di↵erentiable marginal distributions, the joint density

function of the copula is expressed as

f(x1, x2) = fS1
(x1)fS2

(x2)c(FS1
(x1), FS2

(x2)),

where fS1
(x1) and fS2

(x2) are the densities for the distribution function FS1
(x1) and

FS2
(x2), respectively, and

c(u, v) =
@
2
C(u, v)

@uv

is the density of copula. For further details about copulas, see Nelsen (2006) and Sanfins
and Valle (2012). In this work, we consider the normal, Student-t, Gumbel, Frank and Joe
copulas. An appendix at the end of this paper provides details about these copula functions.
Therefore, to construct a joint process of risk-neutral for the bivariate distribution of the
option, the marginal processes are derived first.

2.2 GARCH-in-mean specification under

Instead of deriving the bivariate risk-neutral distribution directly, each marginal process is
proposed to transform separately. Duan (1995) defined an option pricing model considering
that the variance of the asset-object is not constant over time. To implement non-constant
volatility over the maturity time of the option, we use in this work the generalized au-
toregressive conditional heteroskedastic (GARCH) models. Bollerslev (1986) introduced
the GARCH model by modifying the ARCH model presented by Engle (1982). The use
of GARCH models in pricing leads to the correction of some biases in the model of Black
and Scholes (1973), including return skewness and leptokurtic behavior.
GARCH-in-mean refers to the inclusion of an extra term mt in the conditional mean

of the model introduced by Bollerslev (1986). An intuitive idea to use these models in
derivative pricing is that conditional variance is not constant over time and hence the
conditional mean of market returns is a linear function of conditional variance. Another
definite reason to work with the GARCH-in-mean models is that these models explain the
presence of conditional left skewness observed in stock returns.
Consider a discrete time economy with a risk-free asset. We define a complete filtered

probability space (⌦, , t, ) to model uncertainty, where is the historical (physical)
measure and = t, for t = 0, 1, . . . , T , is a filtration, or a family of increasing �-
field information sets, representing the resolution of uncertainty based on the information
generated by the market prices up to and including time t. We assume the general GARCH-
M(p, q) model for the return yt = log(St/St�1) given by

yt = mt +
p

ht✏t, ht = ↵0 +
pX

i=1

↵iht�i�(✏t�i) +
qX

i=1

�iht�i, (1)

where St is the stock price at time t and ✏t is a sequence of independent and identically
distributed random variables with normal distribution; the conditional mean return mt is
assumed to be an Ft-predictable process. In many studies, mt is assumed to be a function
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of the conditional variance ht of the return and a risk premium quantifier at time t; the
function � describes the impact of random shock of return ✏t on the conditional variance
ht and ↵0 > 0,↵i and �i � 0.
The conditional mean and variance of yt are mt = E[yt|Ft�1] and ht = Var[yt|Ft�1]. The

e↵ect of past innovations ✏t�1 under the conditional variance ht have di↵erent impacts
depending on the function �(✏t�1), and consequently we have di↵erent extensions of the
GARCH model. For example, considering p = q = 1, when �(✏t�1) = ✏

2
t�1, the sign of

✏t�1 there is no e↵ect over ht, and we have the traditional GARCH proposed by Boller-
slev (1986). Thus, the innovations have a symmetric e↵ect on the conditional variance,
expressed by

ht = ↵0 + ↵1ht�1✏
2
t�1 + �1ht�1. (2)

Following Liu, Li and Ng (2015), Duan (1995) and Chiou and Tsay (2008), mt = r +
�
p
ht � k✏t(

p
ht), where k✏t(

p
ht) is the cumulate generating function of the innovation

✏t e � is the premium risk parameter. When ✏t follows a normal distribution, we have
k✏t(

p
ht) = ht/2. Because standard GARCH models given by equation (1) respond in

the same way to positive and adverse events, such models cannot correctly capture the
leverage e↵ect. Other forms of the GARCH model, such as EGARCH, NGARCH, and
GJR-GARCH, include the asymmetry e↵ect, can thus be used in option pricing and are
used in the present work. Nelsen (1991) proposed the exponential GARCH (EGARCH)
model. The author assumes that the dynamic of the logarithm of the conditional variance
of EGARCH(1,1) is expressed as

log(ht) = ↵0 + ↵1(|✏t�1|+ �1✏t�1) + �1 log(ht�1), (3)

where ↵0, ↵1, �1 and �1 are constant parameters and ✏ forms a sequence of independent
standard normal random variables representing random shocks. The EGARCH model does
not require such parameter restrictions since the conditional variance is expressed as the
exponential of a function. Including the random shock term in absolute value and with
a parameter �1, the author made volatility a function of both magnitude and sign of the
shock.
Engle (1982) introduced the non-linear asymmetric GARCH (NGARCH), which takes

into account the leverage e↵ect. In their model, the dynamic of the conditional variance
of NGARCH(1,1) is given by

ht = ↵0 + ↵1ht�1(✏t�1 � �1)
2 + �1ht�1, (4)

where ↵0 > 0, ↵1 � 0, �1 � 0 and �1 is a non-negative parameter that captures the
negative correlation between return and volatility innovations. Since the parameter ↵1 is
typically non-negative, a positive �1 means that negative random shocks increase volatility
more than positive random shockes of similar magnitude. Hence, the NGARCH allows for
the levarage through its paramater �1.
Another model that takes into account the asymmetry e↵ect of news on volatility is the

GJR-GARCH introduced by Glosten, Jagannathan and Runkle (1993). According to this
model, the conditional variance dynamic of GJR-GARCH(1,1) is defined as

ht = ↵0 + ↵1ht�1✏
2
t�1 + �1ht�1 + �1ht�1max(0,�✏t�1)

2
, (5)

where ↵0 > 0, ↵1 � 0, �1 � 0 and �1 � 0 are constant parameters. This model allows
for the leverage e↵ect by adding the extra term �1ht�1max(0,�✏t�1)2 when ✏t is negative
since �1 is typically non-negative.
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All the models presented above are in the physical measure ( measure). Now, we discuss
their representations in the risk-neutral measure ( measure), a prerequisite for pricing
options under heteroscedasticity.

2.3 Risk-neutral with GARCH-in-mean process

The concept of risk-neutral valuation relationship (RNVR) has a fundamental role in the
process of pricing options. This principle has as the base an asset, which is priced according
to the discount of the expected value of a payo↵ function under a martingale measure, that
is, that the economic agents are risk-neutral.
To apply this pricing methodology, we assume that a measure of martingale exists in

a discrete economy time, with interest rate and a probability space (⌦, , t, ), where
is a measure of physical probability and t is a filtering at time t.

Definition 2. A measure of probability is equivalent to a measure of probability if:

(1) ⇡ , that is, for all event X, (X) = 0 and (X) = 0.

(2) The discounted price process St is a martingale under , that is, E [St|Ft�1] =
St�1.

Proposition. Assuming continuously compounded returns, the martingale condition for
the discounted stock price can be replaced by

E [eyt |Ft�1] = er.

Proof. From second condition in Definition 2, we have

E [St|Ft�1] = St�1 , E [e�rT
St|Ft�1] = er(t�1)

St�1 , E


St

St�1
|Ft�1

�
= er

, E [eyt|FT�1 ] = er.

Brennan and Schwartz (1979) represented a starting point by providing conditions which
ensure the existence of the risk-neutral measure. Duan (1995) proposes an extension of
RNVR, referred to as locally risk-neutral valuation relationship (LRNVR) by assuming a
conditional Gaussian distribution for the log-returns with unchanged volatility after the
change of measure.

Definition 3. A no arbitrage measure equivalent to is said to satisfy the local
risk-neutral valuation relationship (LRNVR) if the following conditions are satisfied:

(1) yt|Ft�1 ⇠ N(mt, ht) under , where ✏t ⇠ N(0, 1).

(2) E [St/St�1|Ft�1] = er.

(3) Var [log(St/St�1)|Ft�1] = Var [log(St/St�1)|Ft�1].

In the previous definition, the conditional variance under the two measures is required
to be equal. This requirement is necessary to estimate the conditional variance under
and use the framework to obtain the option pricing under . This property and the fact of
the risk-free rate can replace the conditional mean, yield a well-specified model that does
not locally depend on preferences. Duan (1995) proved this latter fact. Here we reduce
all preference consideration to the unit risk premium �. Since is absolutely continuous
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for , the almost certain relationship under also holds true under . Duan (1995) and
Duan et al. (2006) showed that under the risk-neutral measure given by LRNVR, the
asset return dynamic becomes

yt = r � 1

2
ht +

p
ht✏̃t, ✏̃t ⇠ N(0, 1).

In addition:
GARCH(1,1): ht = ↵0 + ↵1ht�1(✏̃t�1 � �1)2 + �1ht�1.

EGARCH(1,1): ht = ↵0 + ↵1[|✏̃t�1 � �1|+ �1(✏̃t�1 � �1)] + �1 log(ht�1).
NGARCH(1,1): ht = ↵0 + ↵1ht�1(✏̃t�1 � �1 � �1)2 + �1ht�1.

GJR-GARCH(1,1): ht = ↵0 + ht�1[�1 + ↵1(✏̃t�1 � �1)2 + �1max(0,�✏̃t�1 + �1)2].
Under LRNVR, the form of mt just a↵ects the volatility dynamics while the risk-
neutralized conditional mean return remains the same, that is, r� ht/2. Now, we have all
the variance specification in the risk-neutral measure. According to the equations above,
the final asset price is derived from Corollary 1.

Corollary 1. When the locally risk-neutral valuation relationship holds, the terminal
price for the ith asset, for i = 1, 2, can be expressed as

Si,T = Si,t e
(T�t)r � 1

2

TX

s=t+1

hi,s +
TX

s=t+1

p
hi,s✏̃i,s].

Therefore, under the locally risk-neutral probability measure , the option with exercise
price K at maturity T has the value

v(t, S1, S2) = e�r(T�t)E [max[max(S1(T ), S2(T ))�K, 0]].

Due to the complexity of the GARCH process, analytical solution for the GARCH-in-
mean Copula option-pricing model, in general, is not available. Therefore, we work with
numerical methods to price the option described in the next section.

3. Methodology and Inference

In this section, we present here the procedure to obtain the price of a bivariate option using
the asymmetric variance process by GARCH-in-mean under risk-neutral, copulas theory
and Monte Carlo simulations. Chiou and Tsay (2008) and Zhang and Guegan (2008) have
inspired this approach.

3.1 Generality

Given y1 and y2, two vectors containing the log-returns for the two stocks, we consider the
following steps:

(1) For each yi, with i = 1, 2, use quasi-maximum likelihood method described in
Subsection 3.2 to estimates the parameters ↵0, ↵1, �1 and � in equation (2) and
↵0, ↵1, �1, � and � for each marginals given in equations (3), (4) and (5). Thus,
the problem is to maximize the function

l(✓, ht) = �n

2

"
log(2⇡) +

1

n

nX

t=1


log(ht) +

(yit �mit)2

ht

�#
,
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with respect to the parameters, where mit is the mean of GARCH-in-mean given
by r + �

p
ht � 1/2ht and r is the fixed risk-free rate yield and ht corresponds to

each variance specification proposed in Subsection 2.2.
(2) Use the estimated parameters to calculate ht for each specification and ✏t in equa-

tion (1) with mt = r + �
p
ht � 1/2ht for each stock.

(3) Therefore, the proposed technique is that the objective copula and the risk-neutral
copula are assumed to be the same. To fit the copulas, we transform the data
into uniformly distributed random variables. Thus we transform the ✏i, for i = 1, 2,
obtained in Step 2 for each stock into uniformly distributed variables, by ui = �(✏i),
where � is the standard normal cumulative distribution function.

(4) Fit a copula to pairs [u1, u2] using maximum likelihood, that is, estimate the copula
parameters ✓c

✓c = argmax
✓c

nX

t=1

log[c((u1,t, u2,t); ✓c)],

where ✓c are the parameters for the specific copula function C and c is the density
function for the given copula in the appendix.

(5) Now, using the Monte Carlo simulation, we obtain the option price. In the first
step generate a sample {u⇤1,t, u⇤2,t}Tt=1 from a uniform marginal distribution from
one specific copula using the algorithm proposed by Nelsen (2006). Here T is the
time to maturity for the option.

(6) For each time step, transform the generated margins to standard normal margins,
in the risk-neutral measure, by ✏̃i,t = ��1(u⇤i,t), for i = 1, 2.

(7) Working with ✏̃i,t to calculate the conditional variances under risk-neutral and the
parameters estimated in step 1. The two future stock prices at time T are

Si,T = Si,t e
(T�t)r � 1

2

TX

s=t+1

hi,s +
TX

s=t+1

p
hi,s✏̃i,s].

(8) Now, repeat Steps 5 to 7 for N runs. Thus, we obtain the Monte Carlo option price
as

v(t, S1, S2) =
e�r(T�t)

N

NX

i=1

max[max(S1,i(T ), S2,i(T ))�K, 0].

3.2 Quasi-maximum likelihood estimation

The assumption of conditional normality is not always appropriate in financial data. How-
ever, Weiss (1986) and Bollerslev and Wooldridge (1992) showed that even when nor-
mality is inappropriately assumed, maximizing the normalized log-likelihood results in
quasi-maximum likelihood (QML) estimates that are consistent and asymptotically nor-
mally distributed. In addition, the authors claim that the conditional mean and variance
functions of the GARCH models are correctly specified.
In particular, a robust covariance matrix conditional non-normality for the parameter

estimates is consistently estimated by A(✓̂)�1
B(✓̂)A(✓̂)�1, where A(✓̂) and B(✓̂) are the

Hessian Matrix and the outer product of the gradients, respectively, calculated for ✓.
The SEs, computed from the square roots of the diagonal elements, are sometimes called
Bollerslev-Wooldridge SE; for more details, see Bollerslev and Wooldridge (1992).
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3.3 Model selection

We notice that for each time series we have four specification for variance processes, that is,
GARCH(1,1), EGARCH(1,1), NGARCH(1,1) and GJR-GARCH(1,1). Choosing an ade-
quate model is the essence of data analysis, which ultimately returns with good forecasting
results.
In this paper, for model selection, we use five di↵erent criteria. The first one is the Akaike

information criterion (AIC) (Akaike, 1973) given by AIC = �2 log(`) + 2k, where ` is the
maximized value of the likelihood function and k is the number of free parameters in the
model. The second one is the Bayesian information criterion (BIC) developed by Schwarz
(1978) and given by BIC = �2 log(`) + k log(n), where n is the number of observations.
The third one is the Hannan-Quinn information criterion (HQIC) proposed by Hannan
and Quinn (1979) and given by HQIC = �2 log(`) + 2k log(log(n)). The fourth one is the
Akaike information corrected criterion (AICc), developed by Hurvich and Tsai (1989) and
given by AICc = �2 log(`)+2kn/(n�k�1), whereas the fifth one is the consistent Akaike
information criterion (CAIC) given by �2 log(`) + k log(n) + 1.
Following Genest, Remillard and Beaudoin (2009), we use the goodness-of-fit test, which

is based on a comparison of the distance between the estimated and empirical copula
by using the Cramer Von Mises test to compare the copula models. The goodness-of-fit
statistic is defined as

Sn =

Z

[0,1]d
n(u)

2dCn(U),

where Cn(U) = 1/n
Pn

i=1 (Ui1  u1;Ui2  u2) is known as the empirical copula; Uj =
(U1j , . . . , Uij) are the pseudo-observations; u = (u1, u2) 2 [0, 1]2; n =

p
n(Cn � C✓n)

is the empirical process that assess the distance between the empirical copula and the
estimation C✓n and n is the number of observations. Note that testing the null hypothesis
that data are fitted by C✓n can be conducted with this statistic.
We chose this procedure because it can deal with non-linearity, asymmetry, serial depen-

dence and also the well-known heavy-tails of financial assets (Righi and Ceretta, 2011).
Furthermore, we make the comparison of the adjusted copula with the empirical copula
by the diagonal method Sungur and Yang (1996). In addition, the AIC, AICc, CAIC, BIC
and HQICare also used to support decision making in choosing the model.

4. Data Analyses

In this section, we illustrate the proposed methodology under two data sets. We used the
software R for implementing the entire methods exposed here. The codes are available
from the authors. The first one is artificial data, where we know the parameter values,
and then we can verify if the methodology is reliable. The second data set is the Brazilian
stock market data.

4.1 Artificial data

We consider here 1000 replications of two correlated time-series for each sample size
(n = 250, 500, 1000) generated from same parameter structure with the Frank (✓ = 8)
and marginals as follows:
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GARCH(1,1):

h1,t = 0.02 + 0.15ht�1(✏̃t�1 � 0.12)2 + 0.8ht�1,

h2,t = 0.03 + 0.2ht�1(✏̃t�1 � 0.08)2 + 0.7ht�1,

EGARCH(1,1):

h1,t = �0.3057 + 0.1223[|✏̃t�1 � 0.12|+ (�0.5057)(✏̃t�1 � 0.12)] + 0.98ln(ht�1),

h2,t = �0.3057 + 0.1223[|✏̃t�1 � 0.12|+ (�0.5057)(✏̃t�1 � 0.12)] + 0.98ln(ht�1),

NGARCH(1,1):

h1,t = 0.012 + 0.15ht�1(✏̃t�1 � 0.5� 0.12)2 + 0.8ht�1,

h2,t = 0.03 + 0.2ht�1(✏̃t�1 � 0.2� 0.08)2 + 0.7ht�1,

GJR-GARCH(1,1):

h1,t = 0.00961 + ht�1[0.93 + 0.024(✏̃t�1 � 0.065)2 + 0.059max(0,�✏̃t�1 + 0.065)2],

h2,t = 0.00961 + ht�1[0.93 + 0.024(✏̃t�1 � 0.065)2 + 0.059max(0,�✏̃t�1 + 0.065)2].

For each configuration, we calculate the average of the QML estimates, as well as the cor-
responding robust standard error (SE) , the size of confidence intervals 95% (CI), coverage
probability (CP), bias and mean squared error (MSE) of the QML estimators. Tables 1, 2, 3
and 4 report the simulation results for GARCH, NGARCH, EGARCH, and GJR-GARCH,
respectively. We observe that the averages of the quasi-maximum likelihood estimates are
close to the true values as the sample size increases, as well as decreasing the standard
deviations in all the models. We also note low bias and MSEs as the sample size increases.
Concerning the size of the confidence interval, we noticed they are getting smaller as the
sample size increases. In addition, the empirical coverages are closer to the nominal ones
for all four models. With this results, we noticed that all the models have good asymptotic
properties.
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Table 1. Parameter estimation of both artificial time-series for each GARCH process.

Parameter ↵0,1 ↵1,1 �1 �1 ↵0,2 ↵1,2 �2 �2 ✓

Real Value 0.02 0.15 0.8 0.12 0.03 0.2 0.7 0.08 8
n = 250 Mean 0.0355 0.1479 0.7511 0.1192 0.0429 0.2020 0.6442 0.0834 7.9349

SE 0.1695 0.4596 0.9783 0.1798 0.0337 0.0927 0.1983 0.0786 0.5777
CI size 0.1213 0.2297 0.5095 0.2345 0.1347 0.2784 0.6594 0.1919 2.4122
CP 0.9880 0.9490 0.9560 0.9760 0.9480 0.9289 0.9480 0.9750 0.9229
Bias -0.0155 0.0021 0.0489 0.0009 -0.0129 -0.0020 0.0558 -0.0034 0.0652
MSE 0.0002 0.0000 0.0024 0.0000 0.0002 0.0000 0.0031 0.0000 0.0042

n = 500 Mean 0.0255 0.1492 0.7830 0.1198 0.0347 0.1998 0.6806 0.0825 7.9836
SE 0.0126 0.0403 0.0615 0.0479 0.0156 0.0562 0.0917 0.0523 0.4092

CI size 0.0493 0.1462 0.2403 0.1838 0.0541 0.1992 0.3349 0.1572 1.6726
CP 0.9720 0.9500 0.9570 0.9470 0.9470 0.9269 0.9289 0.9720 0.9399
Bias -0.0055 0.0008 0.0170 0.0003 -0.0047 0.0002 0.0194 -0.0025 0.0164
MSE 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0004 0.0000 0.0003

n = 1000 Mean 0.0223 0.1500 0.7931 0.1181 0.0323 0.2004 0.6908 0.0780 8.0054
SE 0.0089 0.0314 0.0437 0.0403 0.0112 0.0413 0.0659 0.0401 0.2896

CI size 0.0282 0.0990 0.1442 0.1251 0.0360 0.1308 0.1885 0.1111 1.2808
CP 0.9600 0.9580 0.9570 0.9530 0.9439 0.9550 0.9550 0.9600 0.9469
Bias -0.0023 0.0000 0.0069 0.0019 -0.0023 -0.0004 0.0092 0.0020 -0.0054
MSE 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

Table 2. Parameter estimation of both artificial time-series for each NGARCH process.

Parameter ↵0,1 ↵1,1 �1 �1 �1 ↵0,2 ↵1,2 �2 �2 �2 ✓

Real value 0.012 0.15 0.8 0.12 0.5 0.03 0.2 0.7 0.08 0.2 8
n = 250 Mean 0.0266 0.1431 0.7656 0.1162 0.5517 0.0416 0.1962 0.6503 0.0798 0.3461 7.9343

SE 0.1107 0.7069 0.7901 0.5111 6.3509 0.0444 0.1538 0.2345 0.1130 1.1610 0.5773
CI size 0.0923 0.2061 0.3251 0.2349 0.9699 0.1046 0.2832 0.5296 0.1851 0.9900 2.5200
CP 0.9860 0.9580 0.9620 0.9820 0.9730 0.9620 0.9429 0.9499 0.9870 0.9960 0.9289
Bias -0.0146 0.0069 0.0344 0.0038 -0.0517 -0.0116 0.0038 0.0497 0.0002 -0.0461 0.0657
MSE 0.0002 0.0000 0.0012 0.0000 0.0027 0.0001 0.0000 0.0025 0.0000 0.0021 0.0043

n = 500 Mean 0.0162 0.1435 0.7894 0.1178 0.5345 0.0348 0.1972 0.6796 0.0811 0.3250 7.9601
SE 0.0277 0.0744 0.1240 0.0964 0.4538 0.0149 0.0510 0.0778 0.0542 0.1790 0.4083

CI size 0.0296 0.1412 0.1665 0.1859 0.8008 0.0553 0.2005 0.2963 0.1601 0.9699 1.7088
CP 0.9860 0.9399 0.9520 0.9730 0.9620 0.9540 0.9299 0.9520 0.9740 0.9640 0.9269
Bias -0.0042 0.0065 0.0106 0.0022 -0.0345 -0.0048 0.0028 0.0204 -0.0011 -0.0250 0.0399
MSE 0.0000 0.0000 0.0001 0.0000 0.0012 0.0000 0.0000 0.0004 0.0000 0.0006 0.0016

n = 1000 Mean 0.0142 0.1479 0.7934 0.1174 0.5167 0.0323 0.1973 0.6921 0.0789 0.3135 7.9780
SE 0.0132 0.0425 0.0577 0.0535 0.1983 0.0121 0.0406 0.0625 0.0404 0.1285 0.2890

CI size 0.0167 0.0971 0.1066 0.1322 0.4957 0.0336 0.1274 0.1810 0.1291 0.6677 1.1894
CP 0.9520 0.9469 0.9600 0.9640 0.9590 0.9580 0.9479 0.9540 0.9640 0.9590 0.9479
Bias -0.0022 0.0021 0.0066 0.0026 -0.0167 -0.0023 0.0027 0.0079 0.0011 -0.0135 0.0220
MSE 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000 0.0001 0.0000 0.0002 0.0005

Table 3. Parameter estimation of both artificial time-series for each EGARCH process.

Parameter ↵0,1 ↵1,1 �1 �1 �1 ↵0,2 ↵1,2 �2 �2 �2 ✓

Real Value -0.3067 0.1223 0.98 0.12 -0.5057 -0.3067 0.1223 0.98 0.12 -0.5057 8
n = 250 Mean -0.2852 0.0876 0.9793 0.1204 -0.5080 -0.2874 0.0891 0.9793 0.1204 -0.5065 7.9388

SE 0.8405 1.1478 0.0244 0.2555 0.3996 0.6754 0.7820 0.0242 0.2362 0.2318 0.5781
CI size 0.3182 0.2010 0.0180 0.2353 0.1900 0.3250 0.2215 0.0176 0.2367 0.1876 2.5276
CP 0.9139 0.8759 0.8829 0.9570 0.9249 0.9149 0.8679 0.8749 0.9640 0.9269 0.9139
Bias -0.0205 0.0347 0.0007 -0.0004 0.0023 -0.0183 0.0332 0.0007 -0.0004 0.0008 0.0612
MSE 0.0004 0.0012 0.0000 0.0000 0.0000 0.0003 0.0011 0.0000 0.0000 0.0000 0.0037

n = 500 Mean -0.2960 0.1070 0.9798 0.1205 -0.5060 -0.2968 0.1082 0.9798 0.1198 -0.5067 7.9560
SE 0.0649 0.0374 0.0035 0.0515 0.0408 0.0607 0.0493 0.0026 0.0571 0.0437 0.4085

CI size 0.1790 0.1478 0.0081 0.1756 0.1239 0.1818 0.1592 0.0084 0.1707 0.1248 1.6859
CP 0.9069 0.9118 0.9009 0.9289 0.9139 0.9179 0.9278 0.9309 0.9379 0.9199 0.9339
Bias -0.0097 0.0153 0.0002 -0.0005 0.0003 -0.0089 0.0141 0.0002 0.0002 0.0010 0.0440
MSE 0.0001 0.0002 0.0000 0.0000 0.0000 0.0001 0.0002 0.0000 0.0000 0.0000 0.0019

n = 1000 Mean -0.3033 0.1171 0.9799 0.1212 -0.5061 -0.3039 0.1176 0.9799 0.1210 -0.5054 7.9865
SE 0.0391 0.0226 0.0020 0.0362 0.0242 0.0456 0.0233 0.0026 0.0457 0.0448 0.2892

CI size 0.1116 0.0842 0.0047 0.1231 0.0733 0.1098 0.0838 0.0048 0.1286 0.0707 1.2940
CP 0.9459 0.9409 0.9591 0.9429 0.9599 0.9449 0.9689 0.9339 0.9419 0.9489 0.9579
Bias -0.0024 0.0052 0.0001 -0.0012 0.0004 -0.0018 0.0047 0.0001 -0.0010 -0.0003 0.0135
MSE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002
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Table 4. Parameter estimation of both artificial time-series for each GJR-GARCH process.

Parameter ↵0,1 ↵1,1 �1 �1 �1 ↵0,2 ↵1,2 �2 �2 �2 ✓

Real Value 0.00961 0.024 0.93 0.065 0.059 0.00961 0.024 0.93 0.065 0.059 8
n = 250 Mean 0.0582 0.0306 0.8326 0.0741 0.0548 0.0524 0.0334 0.8346 0.0725 0.0563 7.9335

SE 3.1908 1.2611 7.8901 1.5276 1.5033 6.3504 7.0343 1.9827 6.7417 7.2567 0.5774
CI size 0.4059 0.0949 0.9637 0.1953 0.1697 0.3703 0.1123 0.9627 0.1965 0.1697 2.5486
CP 0.9970 0.9970 0.9880 0.9800 0.9990 0.9870 0.9990 0.9790 0.9840 0.9990 0.9199
Bias -0.0486 -0.0066 0.0974 -0.0091 0.0042 -0.0428 -0.0094 0.0954 -0.0075 0.0027 0.0665
MSE 0.0024 0.0000 0.0095 0.0001 0.0000 0.0018 0.0001 0.0091 0.0001 0.0000 0.0044

n = 500 Mean 0.0219 0.0260 0.9045 0.0672 0.0572 0.0224 0.0262 0.9047 0.0682 0.0563 7.9695
SE 0.2226 0.2865 0.7740 0.2871 0.2983 0.4872 0.4015 1.3715 0.4177 0.4554 0.4087

CI size 0.0753 0.0611 0.2013 0.1516 0.1141 0.0845 0.0634 0.2057 0.1496 0.1141 1.7545
CP 0.9790 0.9760 0.9610 0.9730 0.9680 0.9730 0.9670 0.9720 0.9790 0.9440 0.9239
Bias -0.0122 -0.0020 0.0255 -0.0022 0.0018 -0.0128 -0.0022 0.0253 -0.0032 0.0027 0.0305
MSE 0.0001 0.0000 0.0007 0.0000 0.0000 0.0002 0.0000 0.0006 0.0000 0.0000 0.0009

n = 1000 Mean 0.0134 0.0251 0.9225 0.0651 0.0564 0.0137 0.0252 0.9211 0.0661 0.0577 7.9674
SE 0.0160 0.0537 0.0640 0.0981 0.0590 0.0198 0.0521 0.0759 0.0901 0.0618 0.2888

CI size 0.0299 0.0466 0.0818 0.1209 0.0902 0.0325 0.0476 0.0988 0.1188 0.0875 1.2196
CP 0.9560 0.9590 0.9410 0.9570 0.9420 0.9510 0.9561 0.9440 0.9520 0.9492 0.9499
Bias -0.0037 -0.0011 0.0075 -0.0001 0.0026 -0.0041 -0.0012 0.0089 -0.0011 0.0013 0.0326
MSE 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0011

4.2 Real data

In principle, price data are not available, since the call-on-max option is typically traded
over-the-counter. For this reason, we cannot test the valuation models empirically. How-
ever, comparing models with di↵erent assumptions can be implemented, as in Zhang and
Guegan (2008), Liu, Li and Ng (2015) and Chiou and Tsay (2008). In this section, we
carry on the illustration of the proposed methodology on a real data set concerning the
two stock prices of Brazilian companies. With the objective of analyzing two companies
that could have a high correlation, we choose the companies Bradespar (BRAP4) and
Vale S.A. (VALE3) with the aim of investigating two companies that could have a high
correlation. The Brazilian company Bradespar admits the shareholdings that the bank
Bradesco had in non-financial companies, among them: VCB, Vale, Scopus, and Globo.
Thus, Bradespar’s stocks price would be directly related to the stocks of Vale S.A., where
the company holds the latter’s stock control at 17.4 %. The analyzed period is from
07/01/2015 to 07/17/2018, containing 753 observations.
Figure 1 shows the high positive association between the two series, evidencing the

requirement subject is financial options using these stocks, given its high correlation. Table
5 reports the similarity between the returns series, both concerning the minimum, mean,
median, maximum, standard deviation (SD) and kurtosis, but the VALE3 series has a
slightly more pronounced positive asymmetry than the BRAP4 series. As evidenced in
section 2, asymmetry is present in financial series, a feature that symmetric GARCH
processes have no potential to discriminate between positive and negative asymmetry.

Table 5. Descriptive statistics of returns.

Serie Minimum Mean Median Maximum SD Kurtosis Skewness
BRAP4 -0.134 0.000 0.000 0.153 0.027 0.050 5.150
VALE3 -0.156 0.000 0.000 0.137 0.026 0.047 5.702

Before presenting the estimated coe�cients of time series models, we focus on the anal-
ysis of the best model according to the selection criteria. Given the flexibility of the use of
models based on copula functions, we select for each marginal the best model according to
the selection criteria defined in Section 3.2. According to Table 6, all criteria corroborate
that the model GARCH best fit the BRAP4 series, evidencing that there is no asymmetry
present in this series, while, the best model for the VALE3 series is the EGARCH (evi-
dencing the asymmetry). This result is in agreement with the statement in Table 5, where
the VALE3 stock had an asymmetric coe�cient more pronounced than BRAP4.
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Figure 1. Original Series and Returns.

Table 6. Selection criteria for marginals.

BRAP4 GARCH NGARCH EGARCH GJR-GARCH
AIC -3071.3128 -3069.3172 -3070.1057 -3069.3678
AICc -3071.2591 -3069.2367 -3070.0252 -3069.2872
CAIC -3048.8271 -3041.2102 -3041.9987 -3041.2607
BIC -3052.8271 -3046.2102 -3046.9987 -3046.2607
HQIC -3064.1903 -3060.4142 -3061.2027 -3060.4647
VALE3 GARCH NGARCH EGARCH GJR-GARCH
AIC -3151.2693 -3150.0533 -3153.7289 -3151.7989
AICc -3151.2156 -3149.9728 -3153.6484 -3151.7183
CAIC -3123.6918 -3121.9463 -3128.7836 -3125.6219
BIC -3128.6918 -3126.9463 -3132.7836 -3130.6219
HQIC -3144.1468 -3141.1503 -3144.8258 -3142.8958

Table 7 reports the coe�cients estimated via QML estimates and their respective robust
standard errors. According to this result, we noticed that the best model for the BRAP4
series was the GARCH model, where it does not have an asymmetry parameter. We view
in this model the high persistence, that is, ↵1 + �1 very close to one, suggesting that the
volatility can be persistent (strong temporal dependence), which opens options of models
to analyze series with this feature. The best model for the VALE3 series was the EGARCH,
where it presented a parameter of positive asymmetry, that is, a positive shock decreases
its volatility.
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Table 7. Estimated coe�cients and corresponding robust standard errors for marginals.

BRAP4 GARCH NGARCH EGARCH GJR-GARCH

↵̂0
6.9191e-06
(4.8306e-06)

6.8024e-06
(4.7823e-06)

-0.1399
(0.0455)

7.0316e-06
(4.9614e-06)

↵̂1
0.0479
(0.0125)

0.0477
(0.0127)

0.1005
(0.0248)

0.0507
(0.0175)

�̂
0.9454
(0.0138)

0.9457
(0.0140)

0.9914
(0.0050)

0.9446
(0.0144)

�̂
0.0568
(0.0358)

0.0560
(0.0365)

0.0560
(0.0359)

0.0576
(0.0364)

�̂ -
0.0121
(0.1628)

-0.0618
(0.0235)

4.2924e-03
(0.0180)

VALE3 GARCH NGARCH EGARCH GJR-GARCH

↵̂0
3.7157e-06
(2.9974e-06)

3.0711e-06
(2.9524e-06)

-0.1081
(0.0386)

2.5848e-06
(2.9020e-06)

↵̂1
0.0434
(0.0116)

0.0428
(0.0111)

0.0969
(0.0221)

0.0555
(0.0152)

�̂
0.9519
(0.0121)

0.9522
(0.0117)

0.9957
(0.0004)

0.9554
(0.0113)

�̂
0.0579
(0.0357)

0.0671
(0.0365)

0.0762
(0.0387)

0.0679
(0.0363)

�̂ -
0.1771
(0.1854)

0.1433
(0.1438)

0.0278
(0.0171)

We consider the Kolmogorov-Smirnov, Jarque-Bera, Shapiro-Wilk, and Anderson-
Darling tests to verify the assumption of normality of the residuals for the fitted models.
Table 8 reports their p-values. All tests did not reject the null hypothesis at 5% that
residuals follow a standard normal distribution. In addition, to verify that the increments
are independent, Table 8 also reports the result of the Ljung-Box test, where, for all fitted
models we do not reject the null hypothesis at 5 % that the residuals are independent.

Table 8. Tests of Normality and Independent Increments for residuals.

BRAP4 GARCH NGARCH EGARCH GJR-GARCH
Kolmogorov-Smirnov 0.9315 0.9403 0.9514 0.9343

Jarque-Bera 0.1159 0.1142 0.2351 0.1225
Shapiro-Wilk 0.2571 0.2572 0.3802 0.2633

Anderson-Darling 0.6680 0.6725 0.6572 0.6652
Ljung-Box 0.4940 0.4938 0.4988 0.4944
VALE3 GARCH NGARCH EGARCH GJR-GARCH

Kolmogorov-Smirnov 0.8737 0.8752 0.8761 0.8733
Jarque-Bera 0.2059 0.1680 0.2548 0.1433
Shapiro-Wilk 0.1752 0.1895 0.2644 0.1718

Anderson-Darling 0.2288 0.2627 0.3426 0.2697
Ljung-Box 0.1927 0.2079 0.2145 0.2152

Figure 2 shows the QQ-plots for the two best models for the series, that is, on the left
panel is the GARCH for the BRAP4 series and on the right panel the EGARCH for the
VALE3 series, corroborating with the tests in the Table 8, evidencing the non-rejection of
the normality of the residuals.
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Figure 2. QQ-plots of residuals - GARCH BRAP4 (left panel ) and EGARCH VALE3 (right panel).

Figure 3 illustrates the individual behavior of each set of residual fitted through the
histograms and the joint behavior through the scatterplot in the center of the figure.
As expected, the series has a highly positive association behavior, which is evidenced in
the adjustment of the copulas given in Table 9, where the normal and Student-t copulas
obtained high and positive values of their parameters (-1  ✓  1).

Figure 3. Scatterplot and histograms of residuals - GARCH BRAP4 and EGARCH VALE3.

Table 9. Estimated coe�cients and corresponding standard errors (in parentheses) for copulas.

Normal Student-t Gumbel Frank Joe

✓̂
0.9059
(0.0048)

0.9133
(0.0053)

3.4082
(0.1040)

14.0430
(0.4965)

4.0173
(0.1423)

The degree of freedom of the Student-t copula and its respective
standard deviation were 7.63401 and 1.7263.

According to Table 10 and the selection criteria adopted, the best copula for this data set
was the Student-t copula, though the results found for the Student-t copula are very similar
to the one observed for the Frank copula. The empirical copula and the copula adjusted
by the diagonal method, where the excellent fit of the two copulas is noted, corroborate
this result. The result of the Cramer Von Mises test are 0.0025, 0.0023, 0.0042, 0.0018 and
0.01122, for normal, Student-t, Gumbel, Frank and Joe copulas, respectively. As noted in
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Figure 4, the result shows that Frank copula yields the smallest distance between fitted
and empirical copula. We note that there is a minimal di↵erence between the Frank and
Student-t copulas. Therefore, these two copulas are considered in this work as the best
fittings.

Table 10. Selection model of copulas.

Normal Student-t Gumbel Frank Joe
AIC -1290.6171 -1334.1487 -1231.5615 -1310.8730 -970.63696
AICc -1290.6117 -1334.1327 -1231.5562 -1310.8676 -970.63162
CAIC -1285.9957 -1324.9059 -1226.9401 -1306.2516 -966.01556
BIC -1288.8365 -1330.5875 -1229.7809 -1309.0924 -968.85635
HQIC -1284.9957 -1322.9059 -1225.9401 -1305.2516 -965.01556

Figure 4. Comparing the empirical copula and the true copula on the diagonal.

Given the good fitting of the marginals obtained via time series models and the good joint
fitting via copulas, we now calculate and analyze the option prices considering the call-on-
max payo↵ function. To perform the comparison process, as a benchmark, we compare the
results through the methodology proposed with the classical method, which is a Black-
Scholes extension for the bivariate case (Haug, 2007), where this model considers the
volatility constant over time and the linear dependence structure from the bivariate normal
distribution.
The entire study was performed with 100 000 Monte Carlo simulations, 7 % interest

rate and maturity time of one year. According to Table 9, as expected, the same behavior
is observed for all models, that is, as the strike variable increases it is likely that, in a
call option, the price of the option becomes cheaper. We note that the classical model
obtained the lowest values for all strike values. Gesk and Roll (1984), Black (1975) and
MacBeth and Merville (1980) corroborate this result for the univariate case, where the
authors showed that the models that consider constant volatility over time underpricing
the options, especially in-the-money (ITM) options. That is, a call option’s strike price is
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below the market price in the univariate case. In this work we define ITM options when
the strike price is less than the minimum between the two assets. Moreover, in Table 11,
we can see that the Student-t and Frank copulas have the closest results to each other.
The similarity in the excellent fit of the data can explain this result. We noticed the values
obtained through normal copula obtained high results. The inability of the normal copula
to capture observations in the tails of the distribution, a recurring fact in finances, can
explain this result. The copula Joe obtained higher values mainly when the strike was
smaller than 40, approaching the model of the normal copula. The Gumbel copula was
the one that received the lowest values between the models. Figure 5 shows the behavior
of the option price (z-axis) varying the maturity from 1 to 12 months (y-axis, in days)
and strike (R$ 40.00 to R$ 60.00). We note that the higher the maturity the values di↵er
little between strike prices, which does not happen when the option has a short maturity,
where we indicate that setting at 50 maturity days there is a relatively significant di↵erence
varying the price of the strike. For example, Table 12 presents the prices for considering
maturity = one month, six months and one year and strike = 20, 40 and 60.
Another fundamental aspect in the management of options risks is to know the levels

of dependence between stocks. Therefore, Figure 6 presents the price behavior of the call-
on-max option for the Student-t copula by varying its degrees of dependence. This result
corroborates with those found by Chiou and Tsay (2008) for the call-on-max option using
the American and Taiwanese indices. An intuitive interpretation is: the values of this
option tend to be smaller when the underlying assets move in the same direction as when
in opposite directions.

Table 11. Prices of a call-on-max option under various strikes values (R$).

Strike Classic Normal Student-t Gumbel Frank Joe
20 31.1182 32.3619 32.2648 32.2532 32.2711 32.5083
22 29.2693 30.5241 30.4283 30.4148 30.4329 30.6440
24 27.4764 28.7327 28.6402 28.6228 28.6425 28.8293
26 25.7468 26.9951 26.9054 26.8845 26.9045 27.0694
28 24.0867 25.3171 25.2295 25.2061 25.2258 25.3714
30 22.5003 23.7025 23.6169 23.5918 23.6110 23.7401
32 20.9906 22.1572 22.0733 22.0457 22.0646 22.1787
34 19.5594 20.6831 20.6028 20.5704 20.5889 20.6899
36 18.2071 19.2840 19.2055 19.1678 19.1867 19.2758
38 16.9331 17.9601 17.8810 17.8399 17.8602 17.9371
40 15.7360 16.7112 16.6316 16.5866 16.6093 16.6745
42 14.6140 15.5377 15.4571 15.4103 15.4349 15.4901
44 13.5643 14.4379 14.3578 14.3081 14.3346 14.3826
46 12.5842 13.4087 13.3304 13.2795 13.3062 13.3498
48 11.6705 12.4495 12.3723 12.3199 12.3477 12.3877
50 10.8198 11.5571 11.4799 11.4270 11.4576 11.4945
52 10.0288 10.7290 10.6522 10.5987 10.6321 10.6678
54 9.2941 9.9621 9.8872 9.8339 9.8675 9.9020
56 8.6122 9.2533 9.1807 9.1278 9.1613 9.1933
58 7.9798 8.6001 8.5283 8.4762 8.5101 8.5392
60 7.3937 7.9981 7.9271 7.8762 7.9117 7.9372

Table 12. Prices (R$) of a call-on-max option varying some Maturity time and Strike (R$).

Maturity\Strike R$ 20.00 R$ 40.00 R$ 60.00
One Month 30.9671 10.9067 0.5537
Six Months 30.9190 13.6608 4.1864
One Year 30.7311 15.6953 7.0992
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Figure 5. Price (R$) behavior of the call-on-max option ranging from Maturity to Strike.

Figure 6. Behavior of the call-on-max option price by varying the copula parameter.

In addition, Figure 6 further shows that in-the-money options have the most substantial
di↵erences between dependency levels than out-the-money options (that is, when the strike
is higher than the maximum between the two assets). Therefore, it was empirically verified
the importance of a good joint fit of the stocks, and above all, the calculation of the
correlation between the assets. Moreover, by employing the copulas functions, it is possible
to capture linear, non-linear and caudal associations. Recalling, the traditional models
derived from a Brownian geometric movement consider bivariate normal to price call-
on-max options for two assets, and consequently, the linear correlation coe�cient as the
measure of association.
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5. Concluding Remarks

In this paper, we propose an analysis and comparison among pricing models that consider
the volatility of underlying assets and in the presence of dependence between copula frame-
work. The model is an adequate methodology to realize a more realistic pricing option. To
consider the modeling of asymmetry present in financial series, we examined three models
that are extensions of the GARCH model under the neutral risk measure , a pre-requisite
to price options (NGARCH, EGARCH, and GJR-GARCH). Therefore, through the flexi-
bility of the copula functions, we chose which marginal processes fit best with each stock
and thus proceeded in the joint fitted.
Two databases illustrate the application of the methodology. The first one was an ar-

tificial database with the objective of carrying out a simulation study and the second a
database of two Brazilian companies. The simulation study showed that all models pre-
sented good asymptotic properties. In addition, in the real time-series of two Brazilian
stock companies, the model o↵ered a proper fitting and the results obtained were con-
fronted with the classic model, which is an extension of the Black-Scholes model.
The contributions of the proposed method in the present paper are as follows: (i) using

the best copula makes the model more suitable; (ii) extension to marginal models that
consider asymmetry makes joint modeling more flexible and realistic; (iii) a comparison
of methodologies highlights the role of risk management; (iv) due to the good marginal
and joint fitted, in addition to the values obtained in relation to the classical consolidated
model, there are arguments to believe that the di↵erences obtained between the best mod-
els, through the copulas and the extension of the conventional method, are improvements
in the calculation of the fair value; and (v) the empirical relevance of such alternatives is
apparent given the evidence of non-joint-normality in financial emerging markets.
Finally, we highlight some points for future work. The first one of them, even with

extensions to asymmetric models, we often have financial series with heavy tails, which
should derive a risk-neutral measure Q for these models, such as considering the non-
normality of the residuals. The second point is the adoption of other copula functions,
such as power variance function family copulas. The third, we can consider another skew
distribution for the errors, such as Arrellano-Valle et al. (2010), Minozzo et al. (2012) and
Marcos et al. (2012).

Appendix

The normal copula

The normal copula or commonly known as Gaussian copula receives this name because it
comes from the normal density function for d � 2. A normal bivariate copula is expressed
by

C(u, v) =

Z x1

�1

Z x2

�1

1

2⇡
p

1� ⇢2
e
�
t
2
1 � 2⇢t1t2 + t

2
2

2(1� ⇢2) dt21dt
2
2,

where x1 = ��1(u), x2 = ��1(v), for �1  ⇢  1. This type of copula has no dependence
on the tails of the distributions and is symmetric.



174 Pereira et al.

The Student-t copula

The Student-t copula coincides with the bivariate Student-t distribution function, where
its form is defined as

C(u, v) =

Z x1

�1

Z x2

�1

1

2⇡
p

1� ⇢2

✓
1 +

t
2
1 � 2⇢t1t2
⌫(1� ⇢2)

◆�(⌫+2)/2

dt1dt2,

where ⌫ represents the degrees of freedom of Student-t distribution. As in the case of
normal copula, the Student-t marginal copula coincides with the Student-t standard, being
x1 = t

�1
⌫ (u) e x2 = t

�1
⌫ (v). This type of copula does not have independence in the tails,

which favors its use in extreme events, such as, for example, unplanned oscillations in the
stock market. However, given the symmetry of the function, the degree of dependence on
the upper tail is equal to the lower tail.

The Gumbel copula

The Gumbel copula is characterized by the dependence only on the upper tail and is
represented as

C(u, v) = e�[(� log(u))✓+(� log(v))✓]1/✓
,

where ✓ 2 [1,1]. When ✓ ! 1, dependence is perfectly positive and independent when
✓ = 1.

The Frank Copula

The form of a Frank copula is expressed through

C(u, v) = �1

✓
log

✓
1 +

[e�✓u � 1][e�✓v � 1]

e�✓ � 1

◆

where ✓ 6= 0. When ✓ ! 1, we have perfect positive dependence and we have the case
of independence when we ✓ ! 0. This copula has the same dependence on both function
tails, such as elliptic copulas.

The Joe copula

The Joe copula is given by

C(u, v) = 1�
⇣
[1� u]✓ + [1� v]✓ � [1� u]✓[1� v]✓

⌘1/✓
,

where 1  ✓  1. When ✓ = 1, we have the case of independence and the case of perfect
positive dependence when ✓ ! 1.
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