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Abstract

In this paper, we introduce an asymmetric extension to the tobit model by assuming that
the error term follows a tilted-normal distribution. The new model, namely tilted-normal
tobit model, can be an useful alternative to other skewed tobit models, such as the skew-
normal and power-normal tobit models. The method of maximum likelihood is used
for estimating the model parameters. We provide some simulation studies for di↵erent
sample sizes and parameter settings. In addition, we perform residual and influence
diagnostic analysis. Finally, we use American food consumption data to illustrate the
better performance of the model introduced.

Keywords: Censored regression model · Influence · Maximum likelihood estimation
· Residual and influence diagnostic analysis · Tilted-normal distribution.

Mathematics Subject Classification: Primary 62J05 · Secondary 62N01.

1. Introduction

Tobit models are regression models whose range of the dependent variable is somehow
constrained. They were first suggested in a pioneering work by Tobin (1958), to describe
the relationship between a non-negative dependent variable (the ratio of total durable
goods expenditure to total disposable income, per household) and a vector of independent
variables (the age of the household head, and the ratio of liquid asset holdings to total
disposable income). Tobin called his model the limited dependent variable model, however
it and its various generalizations are popularly known among economists as tobit models,
a phrase coined by Goldberger (1964) due to similarities with probit models (the term
tobit aims to synthesize in one word Tobin’s probit concept). Tobit models are also known
as censored regression models. For discussion on properties, parameter estimation and
asymptotic properties of estimators, see, e.g., Amemiya (1973, 1984, 1985) and Fair (1977).

⇤
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100 Ferreira et al.

The tobit specification is adequate for the situation where the sample proportion of
zero observations is roughly equivalent to the left tail area of the assumed parametric
distribution. The Cragg model (Cragg, 1971), which in the classical literature is known as
the two-part model, is an alternative to tobit when the rate of zero observations is quite
di↵erent from the probability of the left tail obtained with the assumed parametric model.
An interesting way of extending the tobit model is supposing that the probability distri-

bution of the perturbations is no longer normal. For instance, Arellano-Valle et al. (2012)
proposed an extension of the tobit model using the Student-t distribution, which is use-
ful for statistical modeling of censored data sets involving observed variables with heavier
tails than the normal distribution. Mart́ınez-Flórez et al. (2013) assumed the power-normal
distribution (Gupta and Gupta, 2008), thus providing an asymmetric alternative to tobit
model. However, such a probability distribution is problematic, that is, of limited use,
since it only accommodates low to moderate left-skewness. Moreover, Castro et al. (2014)
extended the tobit model to the class of scale mixtures of normal distributions (Andrews
and Mallows, 1974) from the Bayesian viewpoint. Other important contributions extend-
ing the tobit model by using asymmetric and/or heavy-tailed distributions are Garay et
al. (2016, 2017), Mattos et al. (2018), Barros et al. (2018) and Desousa et al. (2018) among
many others.
The main purpose of this paper is to focus on the study of the censored regression model,

under the assumption that the error term follows the tilted-normal distribution (Maiti
and Dey, 2012). Such probability distribution has received some attention in the recent
literature, e.g. Louzada et al. (2018) applied the tilted-normal model to compositional data
on percentages of players’ points in the Brazilian men’s volleyball super league 2014/2015.
Parameter estimation is performed by using the maximum likelihood (ML) approach and
its large sample properties. Application is implemented to American food consumption
data set (USDA, 2000), where it is demonstrated that the proposed model can be very
useful in fitting real data sets.
The paper is organized as follows. In Section 2, we define the tilted-normal distribution

and discuss some of its properties. We present the tilted-normal tobit model and imple-
ment inference using the ML approach in Section 3. In Section 4, results of simulation
studies reveal the good performance of the estimation approach and the appropriateness
of some information criteria in distinguishing among candidate models. Section 5 presents
an application to real data on consumption of tomato in the United States in 1994-1996
(USDA, 2000). Model fitting evaluation indicates that the data set in question is much
better fitted by the tilted-normal tobit model than by the classic (standard or Type I)
tobit model (Tobin, 1958), as well as by other asymmetric models, like the skew-normal
tobit model (Hutton and Stanghellini, 2011) and the power-normal tobit model (Mart́ınez-
Flórez et al., 2013). Finally, some concluding remarks and directions for future work are
given in Section 6. In the work of Hutton and Stanghellini (2011), the skew-normal tobit
model was used to address the skewness and right-censoring problems in bounded health
scores.

2. The Tilted-Normal Distribution

In this section, we present some basic properties of the tilted-normal distribution, including
the probability density function (PDF) and the cumulative distribution function –CDF–
(Subsection 2.1), the moments (Subsection 2.2), as well as other relevant issues (Subsection
2.3).
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Figure 1. Tilted-normal PDF  (z; �) for some values of �.

2.1 Probabilistic functions

Following the proposition of Garćıa et al. (2010) and Maiti and Dey (2012), the tilted-
normal distribution is defined as follows. Let Z be a standard normal random variable,
that is, Z ⇠ N(0, 1). Following Marshall and Olkin (1997), the standard tilted-normal
distribution, denoted by TN(0, 1, �), has PDF given by

 (z; �) =
��(z)

[1� (1� �) {1� �(z)}]2
, z 2 R,

where � > 0 is a shape/skewness parameter, � is the PDF of the standard normal distri-
bution and � is the CDF of the standard normal distribution. The standard tilted-normal
PDF is a unimodal function, which is skewed to the left if � > 1 and to the right if
0 < � < 1, while � = 1 indicates a standard normal PDF (Maiti and Dey, 2012). Figure 1
displays a few PDF graphs for di↵erent values of �.
If Z is a random variable from a TN(0, 1, �) distribution, then the location-scale exten-

sion of Z, Y = µ+ �Z, has PDF given by

 (y;µ,�, �) =
�
��

�y�µ
�

�
⇥
1� (1� �)

�
1� �

�y�µ
�

� ⇤2 , (1)

as well as its CDF given by

 (y;µ,�, �) =
�
�y�µ

�

�

1� (1� �)
�
1� �

�y�µ
�

� , (2)

where µ 2 R and � > 0. We will denote this extension by using the notation Y ⇠
TN(µ,�, �).
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2.2 Moments

For the model (1), Garćıa et al. (2010) showed that the k-th moment about the origin of
the random variable Y is given by

µ
0

k = E
h
Y k

i
=

Z 1

�1
yk (y;µ,�, �)dy

=

Z
1

0


µ+ �

p
2 erf�1

✓
�u+ � � u�

u+ � � u�

◆�k
du,

(3)

where erf�1(w) = w
p
⇡/2 + O

�
w3

�
' w

p
⇡/2 is the inverse error function.

Although the expression (3) seems to be not available in compact form, the authors
verified the following approximations:

µ
0

1 = E [Y ] '
2(1� �)2µ� �

p
2⇡

�
1� �2 + 2� log(�)

�

2�(1� �)
,

µ
0

2 = E
⇥
Y 2

⇤
' �

2(1� �)3

⇢
2(1� �)2µ2 + 2

h�
�2 � 1

�
µ�

p
2⇡ +

�
1 + 6� (1 + �)⇡�2

�i

+ 4��
h
(1� �)µ

p
2⇡ � (1 + �)⇡�

i
log(�)

�
,

µ
0

3 = E
⇥
Y 3

⇤
' �1

4(1� �)�

⇢
� 4(1� �)3µ2 [�1 + �(1 + �)] + 6(1� �)2µ⇡�2

⇥
1 + �

�
2 + �2

�⇤

�
p
2⇡⇡�3

⇥
1 + 2� � 5�2 + 11�3 + 4�4 � �5

⇤
� 6(1� �)��

p
⇡
h
2
p
2(1� �)µ2

+ 4µ�
p
⇡
�
1� �2

�
+
p
2(1 + �)2⇡�2

i
log(�)

�
.

(4)

These quantities can be used to compute the approximate mean (E[Y ] = µ
0

1
), variance

(Var[Y ] = µ
0

2
� (µ

0

1
)2) and skewness index (�1 = µ

0

3
/(µ

0

2
)3/2) of the random variable Y ,

and are particularly useful for estimating the parameters by the method of moments.

2.3 Others

The model (1) can be extended by considering µi = x>
i �, where � is an unknown vector of

regression coe�cients and xi is a vector of known regressors correlated with the response
vector, for i = 1, . . . , n.
Regarding the other skewed distributions that could be used instead of the tilted-normal

distribution, Gupta and Gupta (2008) observed that the estimation of the shape parameter
of the skew-normal distribution (Azzalini, 1985) is problematic, among others, in the cases
where the sample size is not large enough. Monti (2003) noticed that the estimate of the
shape parameter is �̂ = ±1, even when the data are generated by a model with finite �.
Moreover, Pewsey et al. (2012) showed that the Fisher information matrix for the skew-
normal distribution is singular under the symmetry hypothesis and, therefore, regularity
conditions are not satisfied for the likelihood approach. The same authors also derived
the Fisher information matrix for the location-scale version of the power-normal model
(Gupta and Gupta, 2008) and have shown that, in addition to its several nice properties,
it is not singular for the shape parameter � = 1. However, as pointed out by Maiti and
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Dey (2012), left-skewness is not so clear and modeling of left-skewed data will be misfit.
This is due to the fact that such a distribution can only accommodate low to moderate
left-skewness of the data distribution. Hence, the power-normal model is not appropriate
for the cases where the data distribution exhibits strong left-skewness. This limitation also
applies to the tilted-normal distribution, which can not capture high or moderate levels
of skewness (when measured in an appropriate manner). In fact, Rubio and Steel (2012)
and Jones (2015) discuss the restrictions of using the Marshall-Olkin transformation for
inducing skewness in many symmetric models (including the normal one). Despite such
limitation, we demonstrate here that the proposed tobit model based on the tilted-normal
distribution can still be very useful in fitting real data sets as in Section 5.

3. The Tilted-Normal Tobit Model

In this section, we introduce the proposed extension of the tobit model using the tilted-
normal distribution (Subsection 3.1) and discuss statistical inference based on the ML
method (Subsection 3.2).

3.1 Formulation

Let Di = I (Yi > 0), where I(·) is the indicator function. The tilted-normal tobit model
can be defined by relating the observed dependent variable Y o

i to the original (that is, of
theoretical interest), but censored, dependent variable Yi, as follows:

Y o

i = DiYi and Yi = x>
i � + ✏i, (5)

for i = 1, . . . , n, where � is a p ⇥ 1 unknown parameter vector, xi is a p ⇥ 1 vector of
known independent variables, and the errors ✏i ⇠ TN(0,�, �).
The value of the location parameter, 0, of ✏i implies, from the first expression of (4),

that E [✏i] ' ��
p
2⇡

�
1� �2 + 2� log(�)

�
/ (2�(1� �)) < 0, 8�, � > 0 and � 6= 1. Also,

for � > 0 fixed, E [✏i] ! �1 when � ! 0+ and E [✏i] ! 0 as � ! 1�. This location
parameter choice follows from the work of Mart́ınez-Flórez et al. (2013). However, it could
also have been chosen in order to obtain E [✏i] = 0, as in the normal model, and similarly
as in the work of Mattos et al. (2018). Although, even in this case, the expected value of
the observed dependent variable Y o

i di↵ers from the location parameter µi = x>
i �, that

is, E [Y o

i | xi] = E [Yi | Yi > 0,xi]P (Yi > 0 | xi), which, after some steps and considering
✏i ⇠ N

�
0,�2

�
, results in E [Y o

i | xi] = �
�
x>
i �/�

� ⇥
x>
i � + ��

�
x>
i �/�

�
/�

�
x>
i �/�

�⇤
6=

x>
i � (see, e.g., Greene, 2012, Chapter 19).
Note, however, that for the case where ✏i ⇠ TN(0,�, �), the main di�culty in ob-

taining E[Y o

i | xi], which would further allow us to analyze the e↵ects of the inequality
E [Y o

i | xi] 6= x>
i � on the intercept �0 of the tilted-normal tobit model, is that there seems

to be no explicit known expression for the conditional expectation E [Yi | Yi > 0,xi]. Nev-
ertheless, such expected value can be obtained numerically (as shown in Figure 4) or via
approximations, e.g., by using some general results of the Marshall and Olkin (1997) family
of distributions shown in Cordeiro et al. (2014), among others. We will leave this part of
research for our future work.
The tilted-normal tobit model is basically a censored tilted-normal regression model

with the tilted-normal distribution replacing the normal distribution for the error term.
Thus, parameter estimation for the proposed model is related to parameter estimation for
the censored tilted-normal distribution.
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For the more general case, where the (known) left-censoring point is ci 2 R, or even for
the right-censoring case, we can obtain the estimation results by using the previous model
(5), in the same way as stated in Mart́ınez-Flórez et al. (2013).
The next subsection is devoted to implementation of parameter estimation by ML ap-

proach and discusses its properties in large samples.

3.2 Estimation

The ML estimators are the most commonly used in the literature. These estimators enjoy
desirable properties and can be used for constructing confidence intervals for the model
parameters. The normal approximation for the ML estimators in large sample distribution
theory is easily handled either analytically or numerically.
In this work, we consider the ML estimation of the unknown parameters of the tilted-

normal tobit model. The approach is described as follows.

Let ✓ =
�
�>,�, �

�>
be the vector of parameters of interest. Also suppose that the

data consist of n = n0 + n1 observations (x1, d1y1) , . . . , (xn, dnyn), where n0 and n1

are the number of observations on the sets N0 = {i : di = 0} = {i : yi = 0} and
N1 = {i : di = 1} = {i : yi > 0}, respectively. Since the unobserved random variables
Y1, . . . , Yn are independent, with Yi ⇠ TN(x>

i �,�, �), we have P (Y o

i = 0) = P (Yi  0) =
�
�
�x>

i �/�
�
/
�
1� (1� �)

�
1� �

�
�x>

i �/�
� �

, for i 2 N0, while for the non-nulls Y o

i s
we have that they are distributed as their respective Yis, that is, Y o

i ⇠ TN(x>
i �,�, �),

for i 2 N1. Thus, from the relations mentioned above, the likelihood function for the
tilted-normal tobit model is given by

L(✓) =
nY

i=1

2

4
�
⇣
�x>

i �
�

⌘

1� (1� �)
n
1� �

⇣
�x>

i �
�

⌘o

3

5
1�di

2

64
�
��

⇣
yi�x>

i �
�

⌘

⇣
1� (1� �)

n
1� �

⇣
yi�x>

i �
�

⌘o⌘2

3

75

di

.

Then, the corresponding log-likelihood function is expressed as

`(✓) =
nX

i=1

(1� di) log

✓
�

✓
�x>

i �

�

◆◆
�

nX

i=1

(1� di) log

✓
1� (1� �)

⇢
1� �

✓
�x>

i �

�

◆�◆

+ log(�)
nX

i=1

di � log(�)
nX

i=1

di +
nX

i=1

di log

✓
�

✓
yi � x>

i �

�

◆◆

� 2
nX

i=1

di log

✓
1� (1� �)

⇢
1� �

✓
yi � x>

i �

�

◆�◆
.

(6)

The ML estimator ✓̂ of ✓ is obtained by directly solving the nonlinear equations: U(�) = 0,
U(�) = 0 and U(�) = 0, where U(·) denotes the score function (see Appendix for analytic
description). Note that these equations can not be solved analytically, but we can use,
for instance, the optim routine (method = “L-BFGS-B”) of the R software to solve them
numerically. Since regularity conditions are satisfied using the large sample distribution,
the distribution of ✓̂ can be approximated by a multivariate normal distribution, that is,
✓̂ ⇠ Np+2(✓, [Jp+2(✓̂)]�1), to obtain confidence intervals and hypothesis testing for the

parameters of the tilted-normal tobit model, where Jp+2✓̂) is the (p+2)⇥ (p+2) observed

information matrix evaluated at ✓̂. The elements of the diagonal of [Jp+2(✓̂)]�1 can be
used to approximate the corresponding standard errors.
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4. Simulation Studies

In this section, we present the main results obtained from Monte Carlo simulation studies
aimed at verifying properties of the ML estimators of the tilted-normal tobit model pa-
rameters, with di↵erent sample sizes and censoring percentages (Subsection 4.1), as well as
investigating the appropriateness of the chosen model selection criteria (Subsection 4.2).

4.1 Parameter recovery study

The first simulation study was based on M = 2, 000 generated samples of sizes n = 50,
100, 300 and 500.
Without loss of generality, we took � = 1 and �1 = 3.5. It was considered a linear model

with a single covariate X whose values were generated according to a N(0, 1) distribution.
We assumed errors ✏i ⇠ TN(0,�, �). To ensure a censoring percentage (that is, of zero yi
observations) of approximately 5%, 25%, 50% and 75%, we set the following true values
for �0, respectively (and also for di↵erent values of �):

• For � = 0.5: �0 = 6.4, 2.8, 0.4 and �2.1;
• For � = 1: �0 = 6, 2.4, 0.05 and �2.5;
• For � = 2: �0 = 5.5, 2.1, �0.4 and �2.9;
• For � = 5: �0 = 5, 1.5, �0.9 and �3.4.

Observed data yi were taken as yi = max {�0 + �1xi + ✏i, 0}. In order to evaluate esti-
mators performance for point estimates, the following quantities were considered: means,
biases and mean squared errors (MSEs) of the parameter estimates, and estimated cover-
age lengths (CLs). We also assessed the performance of the proposed model through the
coverage probabilities (CPs) of the 95% normal confidence intervals. ML estimates were
computed by using the optim routine (method = “L-BFGS-B”) of the R software.

Let ✓̂ = (b�0, b�1, b�, b�)> be the ML estimators of the tilted-normal tobit model parame-
ters and (sb�0

, sb�1
, sb�, sb�) be their standard errors, which were computed by inverting the

observed information matrix. The means, biases, MSEs, CLs and CPs can be estimated
by the following equations:

Mean
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and

CP (✓j) =
1
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I
⇣
b✓(m)

j � 1.959964 sb✓(m)
j

< ✓j < b✓(m)

j + 1.959964 sb✓(m)
j

⌘
,

for j = 1, 2, 3, 4, where b✓(m)

j is the ML estimate of ✓j obtained from the mth replicated
sample.
From Tables 1-4, it can be seen that the ML estimates of �0 and �1 are unstable,

because these parameters are a↵ected by the skewness parameter � and the proportion of
zero observations in the sample. However, the ML estimates become more stable as the
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Table 1. Estimation results for the tilted-normal tobit model (� = 0.5).
Sample

size

Censoring

percentage
Parameter

True

value
Mean Bias MSE CP CL

50 5 �0 6.4 6.4519 0.0519 0.5945 0.9800 3.0781

�1 3.5 3.5128 0.0128 0.0242 0.9415 0.5863

� 1 1.0012 0.0012 0.0165 0.9340 0.5361

� 0.5 0.8487 0.3487 0.9849 0.8565 4.2149

25 �0 2.8 2.8342 0.0342 0.6226 0.9840 3.3211

�1 3.5 3.5184 0.0184 0.0440 0.9220 0.7732

� 1 0.9980 -0.0020 0.0183 0.9400 0.5851

� 0.5 0.9119 0.4119 1.2976 0.8615 5.0279

50 �0 0.4 0.4397 0.0397 0.7172 0.9870 3.8817

�1 3.5 3.5226 0.0226 0.0935 0.9150 1.0962

� 1 0.9887 -0.0113 0.0246 0.9345 0.6950

� 0.5 0.9361 0.4361 1.3936 0.8435 6.3242

75 �0 -2.1 -2.0622 0.0378 1.0908 0.9850 5.1825

�1 3.5 3.5664 0.0664 0.3317 0.8945 1.9142

� 1 0.9630 -0.0370 0.0449 0.9180 0.9563

� 0.5 0.9565 0.4565 1.6456 0.8140 8.5444

100 5 �0 6.4 6.4122 0.0122 0.3380 0.9770 2.1728

�1 3.5 3.5070 0.0070 0.0120 0.9365 0.4178

� 1 1.0034 0.0034 0.0083 0.9510 0.3611

� 0.5 0.7327 0.2327 0.5402 0.8945 2.5704

25 �0 2.8 2.8077 0.0077 0.3922 0.9845 2.4075

�1 3.5 3.5094 0.0094 0.0228 0.9325 0.5490

� 1 1.0060 0.0060 0.0096 0.9470 0.4015

� 0.5 0.7782 0.2782 0.6988 0.8825 3.1039

50 �0 0.4 0.4195 0.0195 0.5152 0.9870 2.8807

�1 3.5 3.5090 0.0090 0.0447 0.9300 0.7719

� 1 1.0072 0.0072 0.0138 0.9500 0.4878

� 0.5 0.8287 0.3287 0.8875 0.8645 4.0961

75 �0 -2.1 -2.0563 0.0437 0.7604 0.9820 4.0274

�1 3.5 3.5217 0.0217 0.1345 0.9295 1.3138

� 1 0.9945 -0.0055 0.0232 0.9475 0.6972

� 0.5 0.8941 0.3941 1.3086 0.8340 6.2404

300 5 �0 6.4 6.3988 -0.0012 0.1036 0.9610 1.1943

�1 3.5 3.5026 0.0026 0.0039 0.9460 0.2414

� 1 1.0002 0.0002 0.0025 0.9555 0.1908

� 0.5 0.5756 0.0756 0.1010 0.9210 1.1327

25 �0 2.8 2.7921 -0.0079 0.1209 0.9655 1.3199

�1 3.5 3.5052 0.0052 0.0068 0.9430 0.3166

� 1 1.0012 0.0012 0.0028 0.9560 0.2090

� 0.5 0.5978 0.0978 0.1455 0.9180 1.3146

50 �0 0.4 0.3847 -0.0153 0.1704 0.9830 1.5937

�1 3.5 3.5063 0.0063 0.0135 0.9410 0.4446

� 1 1.0023 0.0023 0.0040 0.9530 0.2515

� 0.5 0.6397 0.1397 0.2584 0.9150 1.7361

75 �0 -2.1 -2.1111 -0.0111 0.3248 0.9865 2.3749

�1 3.5 3.5081 0.0081 0.0394 0.9335 0.7416

� 1 1.0041 0.0041 0.0083 0.9540 0.3754

� 0.5 0.7279 0.2279 0.5313 0.8890 2.9640

500 5 �0 6.4 6.3938 -0.0062 0.0546 0.9630 0.9079

�1 3.5 3.5020 0.0020 0.0023 0.9470 0.1873

� 1 0.9999 -0.0001 0.0013 0.9465 0.1436

� 0.5 0.5463 0.0463 0.0498 0.9435 0.8300

25 �0 2.8 2.7915 -0.0085 0.0667 0.9670 1.0014

�1 3.5 3.5040 0.0040 0.0040 0.9445 0.2453

� 1 1.0004 0.0004 0.0016 0.9545 0.1566

� 0.5 0.5572 0.0572 0.0678 0.9305 0.9389

50 �0 0.4 0.3887 -0.0113 0.0900 0.9765 1.2022

�1 3.5 3.5031 0.0031 0.0082 0.9405 0.3438

� 1 1.0006 0.0006 0.0022 0.9540 0.1865

� 0.5 0.5770 0.0770 0.1084 0.9320 1.1725

75 �0 -2.1 -2.1190 -0.0190 0.1888 0.9845 1.8003

�1 3.5 3.5043 0.0043 0.0228 0.9335 0.5727

� 1 1.0035 0.0035 0.0047 0.9530 0.2768

� 0.5 0.6499 0.1499 0.2955 0.9050 2.0154

sample size increases. It can also be noted that the MSEs of the ML estimates of �0, �1, �
and � decrease as the sample size increases, which is expected by us since ML estimators
are consistent. As pointed out by Mart́ınez-Flórez et al. (2013), bias correction methods,
such as bootstrap or jackknife (Efron, 1982; Efron and Tibshirani, 1993), could be tried to
improve small sample performance. The main conclusion here is that we are quite safe to
work with the ML estimation method if sample sizes are large (that is, greater than 100).
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Table 2. Estimation results for the tilted-normal tobit model (� = 1).

Sample

size

Censoring

percentage
Parameter

True

value
Mean Bias MSE CP CL

50 5 �0 6 6.1417 0.1417 0.5485 0.9840 2.9170

�1 3.5 3.5138 0.0138 0.0248 0.9410 0.5952

� 1 0.9993 -0.0007 0.0143 0.9420 0.4983

� 1 1.3193 0.3193 1.6982 0.8365 6.4760

25 �0 2.4 2.5572 0.1572 0.5809 0.9840 3.2330

�1 3.5 3.5164 0.0164 0.0434 0.9300 0.7780

� 1 0.9934 -0.0066 0.0167 0.9435 0.5595

� 1 1.3130 0.3130 1.7376 0.8215 7.2424

50 �0 0.05 0.2379 0.1879 0.6702 0.9830 3.8073

�1 3.5 3.5213 0.0213 0.0895 0.9220 1.0849

� 1 0.9800 -0.0200 0.0232 0.9325 0.6784

� 1 1.3061 0.3061 1.8358 0.8025 8.6561

75 �0 -2.5 -2.2420 0.2580 1.0763 0.9775 5.1703

�1 3.5 3.5570 0.0570 0.3211 0.8985 1.9001

� 1 0.9463 -0.0537 0.0459 0.8975 0.9457

� 1 1.2107 0.2107 1.9302 0.7510 10.8050

100 5 �0 6 6.0401 0.0401 0.2902 0.9905 2.0510

�1 3.5 3.5072 0.0072 0.0124 0.9390 0.4236

� 1 1.0026 0.0026 0.0068 0.9600 0.3323

� 1 1.2999 0.2999 1.2101 0.8715 4.5938

25 �0 2.4 2.4526 0.0526 0.3278 0.9920 2.3338

�1 3.5 3.5107 0.0107 0.0227 0.9350 0.5513

� 1 1.0035 0.0035 0.0082 0.9550 0.3836

� 1 1.3147 0.3147 1.3749 0.8605 5.3230

50 �0 0.05 0.1408 0.0908 0.4298 0.9890 2.8498

�1 3.5 3.5107 0.0107 0.0431 0.9285 0.7646

� 1 1.0006 0.0006 0.0119 0.9545 0.4777

� 1 1.3014 0.3014 1.4665 0.8425 6.4662

75 �0 -2.5 -2.3055 0.1945 0.7475 0.9720 4.0618

�1 3.5 3.5254 0.0254 0.1306 0.9290 1.3025

� 1 0.9843 -0.0157 0.0223 0.9380 0.7052

� 1 1.2642 0.2642 1.8509 0.7850 8.9251

300 5 �0 6 5.9950 -0.0050 0.0855 0.9710 1.1322

�1 3.5 3.5029 0.0029 0.0040 0.9475 0.2447

� 1 1.0001 0.0001 0.0019 0.9535 0.1745

� 1 1.1421 0.1421 0.3988 0.9165 2.2529

25 �0 2.4 2.3905 -0.0095 0.1100 0.9760 1.2999

�1 3.5 3.5050 0.0050 0.0069 0.9445 0.3177

� 1 1.0016 0.0016 0.0025 0.9540 0.2016

� 1 1.1843 0.1843 0.5630 0.9055 2.6950

50 �0 0.05 0.0414 -0.0086 0.1468 0.9845 1.6296

�1 3.5 3.5061 0.0061 0.0132 0.9420 0.4390

� 1 1.0021 0.0021 0.0037 0.9625 0.2564

� 1 1.2282 0.2282 0.7680 0.9010 3.5501

75 �0 -2.5 -2.4638 0.0362 0.2994 0.9780 2.5066

�1 3.5 3.5097 0.0097 0.0377 0.9395 0.7342

� 1 1.0002 0.0002 0.0081 0.9505 0.4031

� 1 1.2854 0.2854 1.2776 0.8595 5.7356

500 5 �0 6 5.9930 -0.0070 0.0487 0.9665 0.8641

�1 3.5 3.5022 0.0022 0.0024 0.9455 0.1899

� 1 1.0003 0.0003 0.0011 0.9520 0.1317

� 1 1.0855 0.0855 0.1869 0.9355 1.6243

25 �0 2.4 2.3894 -0.0106 0.0649 0.9695 0.9893

�1 3.5 3.5041 0.0041 0.0041 0.9450 0.2461

� 1 1.0012 0.0012 0.0015 0.9565 0.1515

� 1 1.1152 0.1152 0.2923 0.9235 1.9189

50 �0 0.05 0.0383 -0.0117 0.0913 0.9760 1.2347

�1 3.5 3.5035 0.0035 0.0079 0.9360 0.3394

� 1 1.0016 0.0016 0.0023 0.9520 0.1912

� 1 1.1501 0.1501 0.4136 0.9180 2.4745

75 �0 -2.5 -2.5073 -0.0073 0.2004 0.9780 1.9543

�1 3.5 3.5052 0.0052 0.0220 0.9375 0.5661

� 1 1.0031 0.0031 0.0053 0.9570 0.3070

� 1 1.2613 0.2613 0.9612 0.8865 4.4039

4.2 Misspecification study

The second simulation study was based on 3, 000 generated samples of size n = 500.
The main goal was to verify if we could distinguish between the proposed model and the
candidate ones, in the light of the data set, based on the adopted model selection criteria:
Akaike information criterion (AIC) (Akaike, 1977), corrected AIC (AICc) (Sugiura, 1978;
Hurvich and Tsai, 1989), consistent AIC (CAIC) (Bozdogan, 1987; Anderson et al., 1998),
Bayesian information criterion (BIC) (Schwarz, 1978), and Hannan-Quinn information
criterion (HQIC) (Hannan and Quinn, 1979).
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Table 3. Estimation results for the tilted-normal tobit model (� = 2).

Sample

size

Censoring

percentage
Parameter

True

value
Mean Bias MSE CP CL

50 5 �0 5.5 5.7563 0.2563 0.5080 0.9745 2.8682

�1 3.5 3.5112 0.1548 0.0241 0.9395 0.5863

� 1 0.9814 0.1141 0.0134 0.9280 0.4887

� 2 1.9730 1.6222 2.6308 0.7890 9.9064

25 �0 2.1 2.3960 0.2960 0.5682 0.9750 3.1662

�1 3.5 3.5123 0.0123 0.0399 0.9335 0.7515

� 1 0.9745 -0.0255 0.0161 0.9355 0.5509

� 2 1.9013 -0.0987 2.6386 0.7630 10.5477

50 �0 -0.4 -0.0271 0.3729 0.7246 0.9690 3.7854

�1 3.5 3.5204 0.0204 0.0869 0.9210 1.0689

� 1 0.9564 -0.0436 0.0237 0.9165 0.6806

� 2 1.7980 -0.2020 2.8972 0.7410 12.1170

75 �0 -2.9 -2.4003 0.4997 1.2122 0.9485 5.1567

�1 3.5 3.5541 0.0541 0.3009 0.8955 1.8605

� 1 0.9143 -0.0857 0.0494 0.8740 0.9397

� 2 1.5492 -0.4508 3.0574 0.6790 14.1499

100 5 �0 5.5 5.6038 0.1038 0.2478 0.9710 2.0787

�1 3.5 3.5049 0.0049 0.0118 0.9445 0.4156

� 1 0.9935 -0.0065 0.0064 0.9520 0.3417

� 2 2.1771 0.1771 2.3208 0.8435 8.0449

25 �0 2.1 2.2390 0.1390 0.2746 0.9730 2.3670

�1 3.5 3.5076 0.0076 0.0202 0.9405 0.5298

� 1 0.9887 -0.0113 0.0077 0.9485 0.3940

� 2 2.1057 0.1057 2.4177 0.8260 8.8352

50 �0 -0.4 -0.1877 0.2123 0.4311 0.9595 2.9385

�1 3.5 3.5110 0.0110 0.0396 0.9325 0.7483

� 1 0.9825 -0.0175 0.0121 0.9420 0.5042

� 2 2.0225 0.0225 2.6717 0.8000 10.6324

75 �0 -2.9 -2.5234 0.3766 0.7913 0.9530 4.0722

�1 3.5 3.5261 0.0261 0.1224 0.9285 1.2666

� 1 0.9539 -0.0461 0.0237 0.9125 0.7083

� 2 1.7361 -0.2639 2.8601 0.7240 12.4367

300 5 �0 5.5 5.5060 0.0060 0.0872 0.9630 1.2106

�1 3.5 3.5026 0.0026 0.0038 0.9455 0.2393

� 1 0.9989 -0.0011 0.0023 0.9490 0.1945

� 2 2.2276 0.2276 1.3580 0.9025 4.7415

25 �0 2.1 2.1138 0.0138 0.1114 0.9630 1.4184

�1 3.5 3.5040 0.0040 0.0061 0.9445 0.3043

� 1 0.9991 -0.0009 0.0030 0.9475 0.2310

� 2 2.2532 0.2532 1.7165 0.8855 5.6553

50 �0 -0.4 -0.3504 0.0496 0.1487 0.9525 1.8175

�1 3.5 3.5068 0.0068 0.0124 0.9450 0.4281

� 1 0.9951 -0.0049 0.0046 0.9470 0.3008

� 1 2.1821 0.1821 1.9111 0.8760 7.1213

75 �0 -2.9 -2.7586 0.1414 0.2937 0.9545 2.6569

�1 3.5 3.5126 0.0126 0.0349 0.9390 0.7116

� 1 0.9831 -0.0169 0.0094 0.9260 0.4415

� 2 2.0438 0.0438 2.3756 0.8085 9.5972

500 5 �0 5.5 5.4934 -0.0066 0.0549 0.9615 0.9335

�1 3.5 3.5023 0.0023 0.0023 0.9455 0.1857

� 1 1.0006 0.0006 0.0014 0.9530 0.1492

� 2 2.1799 0.1799 0.8502 0.9230 3.5385

25 �0 2.1 2.0939 -0.0061 0.0728 0.9660 1.0957

�1 3.5 3.5040 0.0040 0.0037 0.9460 0.2358

� 1 1.0012 0.0012 0.0019 0.9525 0.1777

� 2 2.2187 0.2187 1.1618 0.9085 4.2419

50 �0 -0.4 -0.3887 0.0113 0.1047 0.9570 1.4216

�1 3.5 3.5032 0.0032 0.0075 0.9405 0.3305

� 1 0.9994 -0.0006 0.0031 0.9510 0.2342

� 2 2.2231 0.2231 1.5191 0.8950 5.5508

75 �0 -2.9 -2.8224 0.0776 0.2014 0.9575 2.1558

�1 3.5 3.5070 0.0070 0.0203 0.9375 0.5472

� 1 0.9914 -0.0086 0.0063 0.9375 0.3557

� 2 2.1280 0.1280 2.0353 0.8575 8.0622

As in the simulation study presented in the previous subsection, we considered a linear
model with a single covariate X ⇠ N(0, 1) and set �1 = 3.5. We also assumed the following
distributions for the errors:

• Normal: that is, ✏i ⇠ N(0, 1). To ensure a censoring percentage of about 5%, 25%, 50%
and 75%, we took the following true values for �0, respectively: 6, 2.4, 0.1 and �2.4;

• Skew-normal: that is, ✏i ⇠ SN(0, 1, �) (for details on the skew-normal distribution, see
Azzalini, 1985). To consider the two kinds of skewness this distribution has (left-skewed
if � < 0 and right-skewed if � > 0, while for � = 0 the distribution reduces to the
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Table 4. Estimation results for the tilted-normal tobit model (� = 5).

Sample

size

Censoring

percentage
Parameter

True

value
Mean Bias MSE CP CL

50 5 �0 5 5.3540 0.3540 0.3342 0.9460 2.8536

�1 3.5 3.5111 0.0111 0.0201 0.9475 0.5493

� 1 0.9412 -0.0588 0.0162 0.8680 0.5013

� 5 3.5575 -1.4425 8.1214 0.7440 19.0512

25 �0 1.5 1.8797 0.3797 0.3676 0.9520 3.2018

�1 3.5 3.5134 0.0134 0.0358 0.9400 0.7148

� 1 0.9292 -0.0708 0.0202 0.8700 0.5740

� 5 3.4673 -1.5327 8.3702 0.7460 21.0448

50 �0 -0.9 -0.4860 0.4140 0.4478 0.9570 3.8100

�1 3.5 3.5140 0.0140 0.0727 0.9260 1.0123

� 1 0.9083 -0.0917 0.0307 0.8520 0.7005

� 5 3.3800 -1.6200 8.8377 0.7575 24.6978

75 �0 -3.4 -2.9325 0.4675 0.8327 0.9380 5.1829

�1 3.5 3.5171 0.0171 0.2475 0.9065 1.7592

� 1 0.8662 -0.1338 0.0603 0.8165 0.9525

� 5 3.2562 -1.7438 9.4535 0.7985 31.3246

100 5 �0 5 5.2705 0.2705 0.2364 0.9070 2.2265

�1 3.5 3.5057 0.0057 0.0098 0.9495 0.3863

� 1 0.9601 -0.0399 0.0088 0.8905 0.3841

� 5 3.8660 -1.1340 6.6349 0.7725 15.6729

25 �0 1.5 1.8164 0.3164 0.2865 0.9030 2.5228

�1 3.5 3.5080 0.0080 0.0169 0.9440 0.4980

� 1 0.9500 -0.0500 0.0111 0.8795 0.4426

� 5 3.6951 -1.3049 7.4738 0.7565 17.3047

50 �0 -0.9 -0.5265 0.3735 0.3687 0.9255 2.9950

�1 3.5 3.5063 0.0063 0.0335 0.9410 0.7008

� 1 0.9354 -0.0646 0.0160 0.8755 0.5327

� 5 3.4990 -1.5010 8.3924 0.7285 19.4424

75 �0 -3.4 -2.9793 0.4207 0.5580 0.9445 4.1795

�1 3.5 3.5194 0.0194 0.1060 0.9355 1.2020

� 1 0.9051 0.1512 0.0319 0.8505 0.7477

� 5 3.3094 -1.6906 9.1418 0.7580 25.4297

300 5 �0 5 5.1046 0.1046 0.0970 0.9320 1.4321

�1 3.5 3.5023 0.0023 0.0031 0.9510 0.2211

� 1 0.9848 -0.0152 0.0035 0.9125 0.2501

� 5 4.6549 -0.3451 4.4836 0.8570 11.5500

25 �0 1.5 1.6473 0.1473 0.1269 0.9185 1.6924

�1 3.5 3.5036 0.0036 0.0052 0.9505 0.2844

� 1 0.9781 -0.0219 0.0045 0.8970 0.2970

� 5 4.4234 -0.5766 5.0965 0.8290 13.1186

50 �0 -0.9 -0.6767 0.2233 0.1929 0.8930 2.0705

�1 3.5 3.5073 0.0073 0.0105 0.9445 0.3966

� 1 0.9638 -0.0362 0.0071 0.8735 0.3650

� 5 4.0483 -0.9517 6.0402 0.7815 14.9564

75 �0 -3.4 -3.0605 0.3395 0.3464 0.9010 2.8726

�1 3.5 3.5092 0.0092 0.0295 0.9345 0.6632

� 1 0.9402 -0.0598 0.0142 0.8540 0.5025

� 5 3.5831 -1.4169 7.9578 0.7305 18.6356

500 5 �0 5 5.0518 0.0518 0.0607 0.9445 1.1470

�1 3.5 3.5014 0.0014 0.0019 0.9450 0.1711

� 1 0.9928 -0.0072 0.0021 0.9460 0.2015

� 5 4.9160 -0.0840 3.4303 0.8955 9.5602

25 �0 1.5 1.5847 0.0847 0.0826 0.9315 1.3724

�1 3.5 3.5032 0.0032 0.0032 0.9470 0.2198

� 1 0.9880 -0.0120 0.0029 0.9295 0.2425

� 5 4.7424 -0.2576 4.1078 0.8560 11.1365

50 �0 -0.9 -0.7555 0.1445 0.1282 0.9100 1.7211

�1 3.5 3.5030 0.0030 0.0062 0.9480 0.3060

� 1 0.9774 -0.0226 0.0047 0.9030 0.3051

� 5 4.4380 -0.5620 5.0809 0.8275 13.2592

75 �0 -3.4 -3.1236 0.2764 0.2595 0.8970 2.4194

�1 3.5 3.5058 0.0058 0.0173 0.9395 0.5098

� 1 0.9553 -0.0447 0.0094 0.8605 0.4235

� 5 3.8121 -1.1879 6.8930 0.7495 16.4207

normal one), and ensure a censoring percentage of approximately 5%, 25%, 50% and
75%, we set the following true values for �0, respectively (and also for di↵erent values
of shape/skewness parameter �):
• For � = �2.2: �0 = 6.6, 3.1, 0.9 and �1.7;
• For � = �1.2: �0 = 6.5, 3, 0.2 and �1.8;
• For � = 1.2: �0 = 5.4, 1.8, �0.7 and �3.1;
• For � = 2.2: �0 = 5, 3, �0.7 and �3.3.
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• Power-normal: that is, ✏i ⇠ PN(0, 1, �) (for details on the power-normal distribution,
see Gupta and Gupta, 2008). To consider the two kinds of skewness this distribution
has (left-skewed if 0 < � < 1 and right-skewed if � > 1, while for � = 1 the distribution
reduces to the normal one), and ensure a censoring percentage of approximately 5%,
25%, 50% and 75%, we assumed the following true values for �0, respectively (and also
for di↵erent values of shape/skewness parameter �):
• For � = 0.35: �0 = 7.2, 3.6, 1.1 and �1.5;
• For � = 2.8: �0 = 5, 1.5, �1 and �3.2;
• For � = 10: �0 = 4.2, 0.7, �1.5 and �4.3.

• Tilted-normal: that is, ✏i ⇠ TN(0, 1, �). In order to consider the two kinds of skewness
this distribution has, and ensure a censoring percentage of approximately 5%, 25%, 50%
and 75%, we set the following true values for �0, respectively (and also for di↵erent
values of �):
• For � = 6.5: �0 = 5, 1.5, �1 and �3.5;
• For � = 2: �0 = 5.5, 2, �0.5 and �2.8;
• For � = 0.5: �0 = 6.5, 2.7, 0.3 and �2.1;
• For � = 0.15: �0 = 7, 3.5, 1 and �1.4.

It is important to note that the shape/skewness parameter values presented above, were
chosen in order to ensure a skewness measure of approximately �0.5, �0.2, 0.2 and 0.5,
respectively (in the order that such values appear), for each error distribution (with the
exception of the power-normal distribution for the first case, since -0.5 is less than ⇡ �0.48,
which is the lowest skewness measure that can be accommodated by such a model). The
observed data yi were taken as yi = max {�0 + �1xi + ✏i, 0}, for i = 1, . . . , n.
For each obtained sample and for each situation described above, we applied the following

procedures: all four models (tobit-N, tobit-SN, tobit-PN and tobit-TN, where tobit-N
stands for the normal tobit model, tobit-SN is the skew-normal tobit model, tobit-PN is
the power-normal tobit model, and tobit-TN is the tilted-normal tobit model) were fitted
to the data set and then the best one was selected according to the AIC, AICc, CAIC,
BIC and HQIC criteria. The proportion of times each model was chosen is shown in Tables
5-9. The results in these tables indicate that the true model from which the sample was
generated shows a higher proportion, except for the cases where the degree of asymmetry
is weak.

5. Application

In this section, we illustrate the applicability of our proposed tobit-TN model (Subsec-
tion 5.2) and its diagnostics (Subsection 5.3) using an American food consumption data
set (Subsection 5.1) extracted from the 1994-1996 Continuing Survey of Food Intakes by
Individuals (CSFII) (USDA, 2000).

5.1 Data

In the CSFII, two nonconsecutive days of dietary data for individuals of all ages residing in
the United States were collected via in-person interviews using 24 hours recall. Each sample
person reported the amount of each food item consumed. Where two days were reported,
there is also a third record regarding daily averages. Socioeconomic and demographic data
for the sample households and their members were also collected in the survey. Here, the
size of the extracted sample is n = 304 adults aged 20 or older (we only consider one
member per household). In our application, presented in detail in this section, we select
the amount of tomatoes consumed (in 400 grams) by them as the response variable.
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Table 5. The proportion of times each tobit model is selected as the best one according to the AIC criterion.

Fitted model

True

model
tobit-N tobit-SN tobit-PN tobit-TN

tobit-N 5% 0.8000 0.0130 0.0950 0.0920

tobit-N 25% 0.8037 0.0147 0.0933 0.0883

tobit-N 50% 0.7863 0.0130 0.1047 0.0960

tobit-N 75% 0.7817 0.0280 0.1010 0.0893

tobit-SN 5% (� = �2.2) 0.0007 0.5393 0.2753 0.1847

tobit-SN 25% 0.0033 0.4817 0.3367 0.1783

tobit-SN 50% 0.0260 0.4233 0.3490 0.2017

tobit-SN 75% 0.1693 0.2967 0.3347 0.1993

tobit-SN 5% (� = �1.2) 0.3130 0.1893 0.2683 0.2293

tobit-SN 25% 0.3860 0.1657 0.2447 0.2037

tobit-SN 50% 0.5240 0.1067 0.2010 0.1683

tobit-SN 75% 0.6037 0.0773 0.1683 0.1507

tobit-SN 5% (� = 1.2) 0.3410 0.1273 0.2773 0.2543

tobit-SN 25% 0.4187 0.1143 0.2287 0.2383

tobit-SN 50% 0.5077 0.1027 0.1863 0.2033

tobit-SN 75% 0.6460 0.1057 0.1033 0.1450

tobit-SN 5% (� = 2.2) 0.0017 0.5117 0.3120 0.1747

tobit-SN 25% 0.0033 0.5120 0.2967 0.1880

tobit-SN 50% 0.0297 0.4517 0.2837 0.2350

tobit-SN 75% 0.2013 0.3620 0.1860 0.2507

tobit-PN 5% (� = 0.35) 0.2917 0.0000 0.5177 0.1907

tobit-PN 25% 0.3367 0.0000 0.4820 0.1813

tobit-PN 50% 0.4227 0.0010 0.4180 0.1583

tobit-PN 75% 0.5593 0.0030 0.3080 0.1297

tobit-PN 5% (� = 2.8) 0.3530 0.1263 0.2850 0.2357

tobit-PN 25% 0.4067 0.1150 0.2477 0.2307

tobit-PN 50% 0.5173 0.1073 0.1760 0.1993

tobit-PN 75% 0.6273 0.1013 0.1257 0.1457

tobit-PN 5% (� = 10) 0.0070 0.3173 0.4350 0.2407

tobit-PN 25% 0.0587 0.2870 0.3987 0.2557

tobit-PN 50% 0.0967 0.2727 0.3657 0.2650

tobit-PN 75% 0.3153 0.2593 0.1913 0.2340

tobit-TN 5% (� = 6.5) 0.0030 0.0000 0.1137 0.8833

tobit-TN 25% 0.0147 0.0027 0.1460 0.8367

tobit-TN 50% 0.0607 0.0013 0.1970 0.7410

tobit-TN 75% 0.2023 0.0007 0.2613 0.5357

tobit-TN 5% (� = 2) 0.3023 0.0003 0.2733 0.4240

tobit-TN 25% 0.3733 0.0000 0.2660 0.3607

tobit-TN 50% 0.4643 0.0007 0.2420 0.2930

tobit-TN 75% 0.5910 0.0057 0.2103 0.1930

tobit-TN 5% (� = 0.5) 0.3283 0.1277 0.1737 0.3703

tobit-TN 25% 0.4010 0.1273 0.1477 0.3240

tobit-TN 50% 0.4893 0.1123 0.1257 0.2727

tobit-TN 75% 0.6457 0.1200 0.0810 0.1533

tobit-TN 5% (� = 0.15) 0.0033 0.1537 0.1577 0.6853

tobit-TN 25% 0.0047 0.1690 0.1887 0.6377

tobit-TN 50% 0.0237 0.1720 0.2080 0.5963

tobit-TN 75% 0.1053 0.2527 0.1787 0.4633

Table 10 presents the definitions and sample statistics for all considered variables, where
we see that the proportion of tomato-consuming individuals in the data set is around 70%.
Among those consuming, an individual on average consumes 66.12 grams of tomatoes per
day. The histogram and boxplots of tomato consumption are presented in Figures 2 and
3, respectively. Proposed by Hubert and Vandervieren (2008) and used when the data are
skewed distributed, the adjusted boxplot (see Figure 3 right panel) indicates that some
potential outliers identified by the usual boxplot (see Figure 3 left panel) are not outliers.
Table 11 shows asymmetry and kurtosis coe�cients for complete data and also for pos-

itive ys. Note that values for the asymmetry and kurtosis coe�cients justify using the
skewed alternatives to the tobit-N model, e.g. the proposed tobit-TN model.

5.2 Model results

Following Mart́ınez-Flórez et al. (2013), a more emphatic indication that an asymmetric
model should be considered comes from testing the hypothesis of a tobit-N model against



112 Ferreira et al.

Table 6. The proportion of times each tobit model is selected as the best one according to the AICc

criterion.
Fitted model

True

model
tobit-N tobit-SN tobit-PN tobit-TN

tobit-N 5% 0.8050 0.0123 0.0933 0.0893

tobit-N 25% 0.8093 0.0147 0.0900 0.0860

tobit-N 50% 0.7923 0.0123 0.1013 0.0940

tobit-N 75% 0.7887 0.0273 0.0977 0.0863

tobit-SN 5% (� = �2.2) 0.0007 0.5393 0.2753 0.1847

tobit-SN 25% 0.0033 0.4817 0.3367 0.1783

tobit-SN 50% 0.0273 0.4233 0.3480 0.2013

tobit-SN 75% 0.1720 0.2967 0.3323 0.1990

tobit-SN 5% (� = �1.2) 0.3177 0.1887 0.2660 0.2277

tobit-SN 25% 0.3907 0.1633 0.2433 0.2027

tobit-SN 50% 0.5317 0.1057 0.1977 0.1650

tobit-SN 75% 0.6087 0.0773 0.1660 0.1480

tobit-SN 5% (� = 1.2) 0.3493 0.1267 0.2737 0.2503

tobit-SN 25% 0.4240 0.1137 0.2263 0.2360

tobit-SN 50% 0.5147 0.1013 0.1833 0.2007

tobit-SN 75% 0.6517 0.1050 0.1010 0.1423

tobit-SN 5% (� = 2.2) 0.0020 0.5113 0.3120 0.1747

tobit-SN 25% 0.0033 0.5120 0.2967 0.1880

tobit-SN 50% 0.0303 0.4513 0.2833 0.2350

tobit-SN 75% 0.2037 0.3617 0.1860 0.2487

tobit-PN 5% (� = 0.35) 0.2963 0.0000 0.5150 0.1887

tobit-PN 25% 0.3440 0.0000 0.4767 0.1793

tobit-PN 50% 0.4310 0.0010 0.4133 0.1547

tobit-PN 75% 0.5660 0.0030 0.3030 0.1280

tobit-PN 5% (� = 2.8) 0.3597 0.1257 0.2817 0.2330

tobit-PN 25% 0.4123 0.1140 0.2453 0.2283

tobit-PN 50% 0.5233 0.1070 0.1737 0.1960

tobit-PN 75% 0.6340 0.1007 0.1233 0.1420

tobit-PN 5% (� = 10) 0.0077 0.3173 0.4347 0.2403

tobit-PN 25% 0.0603 0.2867 0.3977 0.2553

tobit-PN 50% 0.0983 0.2723 0.3653 0.2640

tobit-PN 75% 0.3210 0.2583 0.1883 0.2323

tobit-TN 5% (� = 6.5) 0.0033 0.0000 0.1137 0.8830

tobit-TN 25% 0.0153 0.0027 0.1457 0.8363

tobit-TN 50% 0.0627 0.0013 0.1963 0.7397

tobit-TN 75% 0.2070 0.0007 0.2600 0.5323

tobit-TN 5% (� = 2) 0.3073 0.0003 0.2717 0.4207

tobit-TN 25% 0.3783 0.0000 0.2643 0.3573

tobit-TN 50% 0.4707 0.0007 0.2393 0.2893

tobit-TN 75% 0.5957 0.0057 0.2073 0.1913

tobit-TN 5% (� = 0.5) 0.3333 0.1273 0.1720 0.3673

tobit-TN 25% 0.4053 0.1273 0.1460 0.3213

tobit-TN 50% 0.4957 0.1110 0.1237 0.2697

tobit-TN 75% 0.6537 0.1183 0.0787 0.1493

tobit-TN 5% (� = 0.15) 0.0037 0.1537 0.1577 0.6850

tobit-TN 25% 0.0050 0.1690 0.1887 0.6373

tobit-TN 50% 0.0243 0.1717 0.2080 0.5960

tobit-TN 75% 0.1083 0.2517 0.1777 0.4623

an asymmetric tobit model (e.g. the tobit-TN model), that is,

H0 : � = 1 versus H1 : � 6= 1,

using the likelihood ratio statistic:

⇤ =
Ltobit-N(✓)

Ltobit-TN(✓)
.

This leads to the observed value: �2 log (⇤) = 50.5177, which is greater than the 5% critical
value of the Chi-square distribution with one degree of freedom, given by �2

1;0.95 = 3.8415.
Therefore, we can conclude that the tobit-TN model fits the American food consumption
data set (tomato consumption) better than the standard tobit model (that is, the tobit-N
model).
Table 12 presents the parameter estimates for the tobit-N and tobit-TN models, as well

as for the other asymmetric alternatives, such as the tobit-SN and tobit-PN models. Notice
that all the information criteria choose the tobit-TN model as the best one.
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Table 7. The proportion of times each tobit model is selected as the best one according to the CAIC

criterion.
Fitted model

True

model
tobit-N tobit-SN tobit-PN tobit-TN

tobit-N 5% 0.9897 0.0017 0.0063 0.0023

tobit-N 25% 0.9900 0.0013 0.0037 0.0050

tobit-N 50% 0.9873 0.0020 0.0057 0.0050

tobit-N 75% 0.9787 0.0050 0.0087 0.0077

tobit-SN 5% (� = �2.2) 0.0220 0.5363 0.2640 0.1777

tobit-SN 25% 0.0670 0.4707 0.2997 0.1627

tobit-SN 50% 0.2410 0.3657 0.2390 0.1543

tobit-SN 75% 0.6440 0.1720 0.1020 0.0820

tobit-SN 5% (� = �1.2) 0.7730 0.0703 0.0833 0.0733

tobit-SN 25% 0.8320 0.0507 0.0633 0.0540

tobit-SN 50% 0.9110 0.0287 0.0313 0.0290

tobit-SN 75% 0.9373 0.0177 0.0200 0.0250

tobit-SN 5% (� = 1.2) 0.7913 0.0487 0.0840 0.0760

tobit-SN 25% 0.8450 0.0377 0.0563 0.0610

tobit-SN 50% 0.8960 0.0280 0.0340 0.0420

tobit-SN 75% 0.9457 0.0220 0.0107 0.0217

tobit-SN 5% (� = 2.2) 0.0373 0.4980 0.3020 0.1627

tobit-SN 25% 0.0667 0.4823 0.2793 0.1717

tobit-SN 50% 0.2513 0.3603 0.2193 0.1690

tobit-SN 75% 0.6440 0.1723 0.0793 0.1043

tobit-PN 5% (� = 0.35) 0.7610 0.0000 0.1753 0.0637

tobit-PN 25% 0.8137 0.0000 0.1330 0.0533

tobit-PN 50% 0.8637 0.0003 0.0983 0.0377

tobit-PN 75% 0.9437 0.0010 0.0430 0.0123

tobit-PN 5% (� = 2.8) 0.7900 0.0453 0.0907 0.0740

tobit-PN 25% 0.8363 0.0380 0.0677 0.0580

tobit-PN 50% 0.8940 0.0333 0.0367 0.0360

tobit-PN 75% 0.9440 0.0203 0.0147 0.0210

tobit-PN 5% (� = 10) 0.0947 0.2923 0.3963 0.2167

tobit-PN 25% 0.3253 0.2150 0.2793 0.1803

tobit-PN 50% 0.4680 0.1657 0.2073 0.1590

tobit-PN 75% 0.7557 0.0950 0.0627 0.0867

tobit-TN 5% (� = 6.5) 0.0570 0.0000 0.1033 0.8397

tobit-TN 25% 0.1447 0.0027 0.1180 0.7347

tobit-TN 50% 0.3437 0.0013 0.1237 0.5313

tobit-TN 75% 0.6633 0.0003 0.0950 0.2413

tobit-TN 5% (� = 2) 0.7707 0.0000 0.0977 0.1317

tobit-TN 25% 0.8223 0.0000 0.0757 0.1020

tobit-TN 50% 0.8717 0.0000 0.0593 0.0690

tobit-TN 75% 0.9400 0.0007 0.0310 0.0283

tobit-TN 5% (� = 0.5) 0.7747 0.0567 0.0530 0.1157

tobit-TN 25% 0.8467 0.0467 0.0307 0.0760

tobit-TN 50% 0.8917 0.0330 0.0277 0.0477

tobit-TN 75% 0.9503 0.0270 0.0070 0.0157

tobit-TN 5% (� = 0.15) 0.0503 0.1487 0.1463 0.6547

tobit-TN 25% 0.0860 0.1570 0.1680 0.5890

tobit-TN 50% 0.2110 0.1473 0.1557 0.4860

tobit-TN 75% 0.4707 0.1560 0.0993 0.2740

In Figure 4, we show a scatter plot of Ê [Y o

i | xi] (calculated numerically using adaptive

quadrature implemented by the integrate function in R) versus xi�̂, for i = 1, 2, . . . , 304.
Besides the fact that Ê [Y o

i | xi] 6= xi�̂, there seems to be a slightly quadratic relationship
between these two quantities.

5.3 Residual and influence diagnostic analysis

Next, we perform a residual analysis to detect atypical observations and/or model mis-
specification. We can generate envelopes as suggested by Atkinson (1981), based on the
generalized Cox-Snell (GCS) residuals, which for the case of tilted-normal distribution are

defined as rGCS

i = � log
⇣
1�  ̂(yi; µ̂i, �̂, �̂)

⌘
, i = 1, . . . , n, where  ̂ denotes the CDF (2)

fitted to the data. The results (half-normal plots with simulated envelopes) are shown in
Figure 5, from which we can see that the tobit-TN model fits better the American food
consumption data set.
In order to identify influential observations, we can generate graphs of the generalized

Cook distance (Cook, 1977, 1986), where a high value of this measure indicates that the



114 Ferreira et al.

Table 8. The proportion of times each tobit model is selected as the best one according to the BIC criterion.

Fitted model

True

model
tobit-N tobit-SN tobit-PN tobit-TN

tobit-N 5% 0.9857 0.0020 0.0090 0.0033

tobit-N 25% 0.9827 0.0017 0.0080 0.0077

tobit-N 50% 0.9807 0.0023 0.0093 0.0077

tobit-N 75% 0.9703 0.0057 0.0120 0.0120

tobit-SN 5% (� = �2.2) 0.0120 0.5380 0.2697 0.1803

tobit-SN 25% 0.0460 0.4760 0.3110 0.1670

tobit-SN 50% 0.1800 0.3850 0.2680 0.1670

tobit-SN 75% 0.5503 0.2033 0.1380 0.1083

tobit-SN 5% (� = �1.2) 0.7137 0.0830 0.1097 0.0937

tobit-SN 25% 0.7873 0.0637 0.0820 0.0670

tobit-SN 50% 0.8737 0.0343 0.0477 0.0443

tobit-SN 75% 0.9067 0.0247 0.0317 0.0370

tobit-SN 5% (� = 1.2) 0.7330 0.0613 0.1060 0.0997

tobit-SN 25% 0.8017 0.0487 0.0750 0.0747

tobit-SN 50% 0.8623 0.0370 0.0457 0.0550

tobit-SN 75% 0.9270 0.0310 0.0147 0.0273

tobit-SN 5% (� = 2.2) 0.0250 0.5037 0.3057 0.1657

tobit-SN 25% 0.0470 0.4937 0.2840 0.1753

tobit-SN 50% 0.2010 0.3850 0.2330 0.1810

tobit-SN 75% 0.5657 0.2083 0.0987 0.1273

tobit-PN 5% (� = 0.35) 0.6983 0.0000 0.2197 0.0820

tobit-PN 25% 0.7567 0.0000 0.1760 0.0673

tobit-PN 50% 0.8130 0.0003 0.1373 0.0493

tobit-PN 75% 0.9107 0.0010 0.0660 0.0223

tobit-PN 5% (� = 2.8) 0.7363 0.0577 0.1117 0.0943

tobit-PN 25% 0.7937 0.0453 0.0850 0.0760

tobit-PN 50% 0.8547 0.0437 0.0527 0.0490

tobit-PN 75% 0.9147 0.0330 0.0227 0.0297

tobit-PN 5% (� = 10) 0.0657 0.3030 0.4070 0.2243

tobit-PN 25% 0.2693 0.2340 0.3020 0.1947

tobit-PN 50% 0.3963 0.1863 0.2377 0.1797

tobit-PN 75% 0.6933 0.1153 0.0810 0.1103

tobit-TN 5% (� = 6.5) 0.0417 0.0000 0.1053 0.8530

tobit-TN 25% 0.1083 0.0027 0.1240 0.7650

tobit-TN 50% 0.2810 0.0013 0.1377 0.5800

tobit-TN 75% 0.5893 0.0003 0.1200 0.2903

tobit-TN 5% (� = 2) 0.7033 0.0000 0.1223 0.1743

tobit-TN 25% 0.7773 0.0000 0.0973 0.1253

tobit-TN 50% 0.8260 0.0000 0.0777 0.0963

tobit-TN 75% 0.9147 0.0007 0.0407 0.0440

tobit-TN 5% (� = 0.5) 0.7193 0.0670 0.0670 0.1467

tobit-TN 25% 0.7950 0.0567 0.0457 0.1027

tobit-TN 50% 0.8497 0.0443 0.0350 0.0710

tobit-TN 75% 0.9313 0.0340 0.0100 0.0247

tobit-TN 5% (� = 0.15) 0.0350 0.1513 0.1497 0.6640

tobit-TN 25% 0.0627 0.1597 0.1743 0.6033

tobit-TN 50% 0.1647 0.1553 0.1673 0.5127

tobit-TN 75% 0.4023 0.1803 0.1110 0.3063
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Figure 2. Distribution of the tomato consumption. The vertical line at zero on x axis represents individuals that

did not consume tomatoes during the survey period.
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Table 9. The proportion of times each tobit model is selected as the best one according to the HQIC

criterion.
Fitted model

True

model
tobit-N tobit-SN tobit-PN tobit-TN

tobit-N 5% 0.9300 0.0047 0.0327 0.0327

tobit-N 25% 0.9330 0.0070 0.0337 0.0263

tobit-N 50% 0.9260 0.0053 0.0380 0.0307

tobit-N 75% 0.9037 0.0140 0.0433 0.0390

tobit-SN 5% (� = �2.2) 0.0033 0.5390 0.2743 0.1833

tobit-SN 25% 0.0117 0.4813 0.3313 0.1757

tobit-SN 50% 0.0653 0.4167 0.3250 0.1930

tobit-SN 75% 0.3270 0.2653 0.2460 0.1617

tobit-SN 5% (� = �1.2) 0.4983 0.1393 0.1913 0.1710

tobit-SN 25% 0.5780 0.1143 0.1730 0.1347

tobit-SN 50% 0.7083 0.0653 0.1263 0.1000

tobit-SN 75% 0.7707 0.0520 0.0893 0.0880

tobit-SN 5% (� = 1.2) 0.5360 0.1010 0.1877 0.1753

tobit-SN 25% 0.6053 0.0833 0.1557 0.1557

tobit-SN 50% 0.6940 0.0680 0.1147 0.1233

tobit-SN 75% 0.8113 0.0643 0.0510 0.0733

tobit-SN 5% (� = 2.2) 0.0053 0.5110 0.3110 0.1727

tobit-SN 25% 0.0143 0.5080 0.2933 0.1843

tobit-SN 50% 0.0820 0.4347 0.2687 0.2147

tobit-SN 75% 0.3580 0.3020 0.1463 0.1937

tobit-PN 5% (� = 0.35) 0.4790 0.0000 0.3800 0.1410

tobit-PN 25% 0.5470 0.0000 0.3297 0.1233

tobit-PN 50% 0.6297 0.0010 0.2707 0.0987

tobit-PN 75% 0.7597 0.0023 0.1723 0.0657

tobit-PN 5% (� = 2.8) 0.5430 0.0960 0.1943 0.1667

tobit-PN 25% 0.6030 0.0817 0.1657 0.1497

tobit-PN 50% 0.7023 0.0790 0.1057 0.1130

tobit-PN 75% 0.8033 0.0663 0.0593 0.0710

tobit-PN 5% (� = 10) 0.0193 0.3153 0.4290 0.2363

tobit-PN 25% 0.1337 0.2703 0.3667 0.2293

tobit-PN 50% 0.2130 0.2457 0.3123 0.2290

tobit-PN 75% 0.4873 0.1940 0.1417 0.1770

tobit-TN 5% (� = 6.5) 0.0097 0.0000 0.1120 0.8783

tobit-TN 25% 0.0387 0.0027 0.1400 0.8187

tobit-TN 50% 0.1307 0.0013 0.1770 0.6910

tobit-TN 75% 0.3650 0.0007 0.2043 0.4300

tobit-TN 5% (� = 2) 0.4937 0.0000 0.2083 0.2980

tobit-TN 25% 0.5740 0.0000 0.1870 0.2390

tobit-TN 50% 0.6540 0.0000 0.1583 0.1877

tobit-TN 75% 0.7703 0.0027 0.1127 0.1143

tobit-TN 5% (� = 0.5) 0.5143 0.1037 0.1197 0.2623

tobit-TN 25% 0.6013 0.0977 0.0900 0.2110

tobit-TN 50% 0.6953 0.0793 0.0710 0.1543

tobit-TN 75% 0.8103 0.0773 0.0330 0.0793

tobit-TN 5% (� = 0.15) 0.0073 0.1533 0.1573 0.6820

tobit-TN 25% 0.0177 0.1663 0.1863 0.6297

tobit-TN 50% 0.0637 0.1673 0.1970 0.5720

tobit-TN 75% 0.0637 0.1673 0.1970 0.5720

Table 10. Variable definitions and sample statistics (n = 304).

Variable Definition Mean
Standard

Deviation

Dependent variable: amount consumed

Tomato (in 400 grams) Quantity of tomatoes consumed 0.1153 0.1598

Among the consuming (n = 212; 69.74%) 0.1653 0.1684

Continuous explanatory variable

Income Household income as the proportion of 2.3730 0.8489

poverty threshold

Binary explanatory variables (yes = 1; no = 0)

Age 20-30 Age is 20-30 0.1480

Age 31-40 Age is 31-40 0.1776

Age 41-50 Age is 41-50 0.1974

Age 51-60 Age is 51-60 0.1743

Age > 60 Age > 60 (reference) 0.3026

Northeast Resides in the Northeastern states 0.1579

Midwest Resides in the Midwestern states 0.2336

West Resides in the Western states 0.2204

South Resides in the Southern states (reference) 0.3882

Source: Compiled from the CSFII, USDA, 1994-1996.
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Figure 3. Usual boxplot (left panel) and adjusted boxplot (right panel) for the tomato consumption data.

Table 11. Descriptive statistics for GCS residuals of the tobit-N model.

n Mean
Standard
deviation Skewness Kurtosis

304 1.0970 1.3159 4.4515 26.8052
212 1.3603 1.4983 3.8351 20.0321

Table 12. Parameter estimates (standard errors in parenthesis) for tobit-N, tobit-SN, tobit-PN and tobit-

TN models.

Fitted model
Parameter tobit-N tobit-SN tobit-PN tobit-TN

�0 (Intercept)
-0.0025
(0.0446)

-0.1541
(0.0378)

-0.9440
(0.1849)

0.5662
(0.0852)

�11 (Age 20-30)
-0.0419
(0.0397)

-0.0164
(0.0328)

-0.0228
(0.0323)

-0.0222
(0.0284)

�12 (Age 31-40)
-0.0744
(0.0371)

-0.0439
(0.0317)

-0.0503
(0.0306)

-0.0503
(0.0274)

�13 (Age 41-50)
-0.0142
(0.0353)

0.0053
(0.0277)

-0.0032
(0.0283)

-0.0081
(0.0254)

�14 (Age 51-60)
-0.0152
(0.0369)

0.0094
(0.0293)

0.0017
(0.0296)

-0.0029
(0.0264)

�21 (Northeast)
0.0845
(0.0368)

0.0511
(0.0281)

0.0516
(0.0296)

0.0344
(0.0268)

�22 (Midwest)
0.0499
(0.0326)

0.0240
(0.0259)

0.0261
(0.0262)

0.0173
(0.0234)

�23 (West)
0.0253
(0.0328)

0.0166
(0.0269)

0.0191
(0.0267)

0.0160
(0.0235)

�3 (Income)
0.0292
(0.0147)

0.0151
(0.0120)

0.0171
(0.0118)

0.0133
(0.0103)

�
0.2024
(0.0104)

0.2675
(0.0147)

0.3930
(0.0354)

0.2325
(0.0185)

� -
4.3851
(2.1513)

99.9963
(75.3681)

0.0114
(0.0059)

Log-likelihood -37.3939 -22.7356 -20.2673 -12.1351
AIC 94.7879 67.4711 62.5347 46.2702
AICc 95.6920 68.5433 63.6068 47.3424
CAIC 141.9582 119.3584 114.4220 98.1576
BIC 131.9582 108.3584 103.4220 87.1576
HQIC 109.6569 83.8270 78.8905 62.6261
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Figure 5. Half-normal plots with simulated envelopes for the GCS residuals.

corresponding observation has a high impact on the ML estimates of the parameters. We
can use 1.0 as the cut-o↵ value, as employed by some authors, like Imon (2005). From
Figure 6, we note that, under the tobit-N model fitting, the observations 187 and 237
are influential on the ML estimates. However, with the tobit-SN, tobit-PN and tobit-TN
models fitted, the scenario has changed: no observation is considered influential on the
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Figure 6. Generalized Cook distance. The influential observations are numbered.

parameter estimates, showing that these models are more robust.

6. Conclusions and Further Research

This paper discussed an asymmetric alternative for the standard tobit model (Tobin, 1958).
It was based on the tilted-normal distribution (Maiti and Dey, 2012). The standard tobit
model is a special case of the proposed model, which can also be seen as an alternative for
the tobit-SN model (Hutton and Stanghellini, 2011) and tobit-PN model (Mart́ınez-Flórez
et al., 2013). Parameter estimates were obtained by using the ML method, which was
also used for deriving large sample properties for the estimators. All the simulations and
statistical analyses were performed using the programming language R version 3.3.1 (R
Core Team, 2016). The computational code is available from the authors upon request.
Simulation studies indicated good parameter recovery with the estimation approach de-
veloped, and appropriateness of the chosen model selection criteria. Since the standard
tobit model is a special case of the tobit-TN model, the likelihood ratio statistic can be
used for testing the standard tobit model null hypothesis. Application to an American
food consumption data set (tomato consumption) indicated that the tobit-TN model can
be an useful alternative to the standard tobit model, as well as to some of its asymmet-
ric versions (tobit-SN and tobit-PN models). However, although the tobit-TN model was
valid, that is, it has shown an adequate fitting to the data set at hand, we could also
have considered a mixture of normal or tilted-normal distributions, for instance, as well as
skewed heavy-tailed distributions for the error term, since the tomato consumption data
seemed to have a long right tail. More study in this direction is desired.
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Future work may also include to consider the use of other flexible distributions with
better inferential properties and higher flexibility (e.g. the Families 1 to 4 considered in
Jones, 2015) in the tobit framework. Other possible extension of the tobit model consid-
ers that the error term follows the centered skew-normal Birnbaum-Saunders distribution
proposed by Chaves et al. (2019). Despite of being straightforward, our proposed ML es-
timation approach performs well, as demonstrated in the simulation results shown in Sec-
tion 4. However, an interesting alternative to the direct maximization of the log-likelihood
function, a procedure that sometimes can be quite cumbersome, is to use the Expectation-
Maximization (EM) algorithm (Dempster et al., 1977) or some other extensions like the
Monte Carlo EM (MCEM) (Wei and Tanner, 1990), Expectation Conditional Maximiza-
tion (ECM) (Meng and Rubin, 1993), ECM Either (ECME) (Liu and Rubin, 1994) or the
Stochastic Approximation of EM (SAEM) algorithm (Delyon et al., 1999). As stated in
Mattos et al. (2018), the EM algorithm is a very popular iterative optimization strategy
in models with non-observed or incomplete data, and has many attractive features such
as numerical stability, simplicity of implementation and quite reasonable memory require-
ments. Thus, the EM algorithm provides an interesting setting for the ML estimation of
tobit models, including for instance the estimation or prediction of the censored obser-
vations. Arellano-Valle et al. (2012), Garay et al. (2016, 2017) and Mattos et al. (2018)
developed e�cient EM-type algorithms for the ML estimation of their proposed exten-
sions of the standard tobit model (Tobin, 1958). The derivation of an EM-type approach
for our proposed tobit-TN model, e.g., by using some general mathematical properties of
the Marshall-Olkin family of distributions shown in Cordeiro et al. (2014), will be the sub-
ject to our future work. We also intend to develop a Bayesian framework for the tobit-TN
model, as similarly as in the works of Garay et al. (2015) and Massuia et al. (2017).

Appendix: Score functions

In this appendix, we show the score functions of the log-likelihood function (6). These
quantities are obtained as follows:

U(�) =
@` (✓)

@�
=

1

�

nX

i=1

di [zi + 2(1� �)ki�(zi)]x
>
i �

1

�

nX
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(1�di) [w0i � (1� �)k0i�(z0i)]x
>
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where z0i = �x>
i �/�, zi =

�
yi � x>

i �
�
/�, k0i = [1� (1� �) {1� �(z0i)}]�1, ki =

[1� (1� �) {1� �(zi)}]�1 and w0i = �(z0i)/�(z0i).
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