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Abstract

In this paper, we propose a regression model based on the assumption that the error term
follows a mixture of normal distributions. Specifically, we consider a finite scale mix-
ture of skew-normal distributions, a rich family that contains the skew-normal, skew-t,
skew-slash and skew-contaminated normal distributions as members. This model allows
us to describe data with high flexibility, simultaneously accommodating multimodality,
skewness and heavy tails. We develop a simple EM-type algorithm to perform maximum
likelihood inference of the parameters of the proposed model with closed-form expres-
sions for both E- and M-steps. Furthermore, the observed information matrix is derived
analytically to account for the corresponding standard errors and a bootstrap procedure
is implemented to test the number of components in the mixture. The practical utility
of the new model is illustrated with a real dataset and several simulation studies. The
proposed algorithm and methods are implemented in an R package named FMsmsnReg.

Keywords: ECME algorithm · Mixture model · Non-normal error distribution
· Scale mixtures of skew-normal distributions

Mathematics Subject Classification: Primary 62J05 · Secondary 62J99

1. Bibliographical Review and Motivating Example

1.1 Introduction

A basic assumption of the linear regression (LR) model is that the error term follows a
normal distribution. However, it is well known that data from some phenomena do not
always satisfy this assumption, instead having a distribution with heavy tails, skewness
or multimodality. Many extensions of this classic model have been proposed to broaden
the applicability of Gaussian linear regression (N-LR) analysis to situations where the
Gaussian error term assumption may be inadequate, such as, the use of the Student-t
distribution (Lange et al., 1989), which is appropriate for datasets involving errors with
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longer than normal tails. Other extensions include the use of the symmetrical class of
scale mixtures of normal (SMN) distributions (Andrews and Mallows, 1974; Lange and
Sinsheimer, 1993), as discussed in Galea et al. (1997), the asymmetrical class of skew-
normal (SMSN) distributions proposed by Branco and Dey (2001) or the unified skew-
elliptical distributions proposed by Arellano and Genton (2010). However, in practice when
nothing is known about the true distribution of the error terms, a risk exists that linear
regression analysis based on any of the above models will be performed using an incorrectly
specified model. There can also be situations where a single parametric family is unable
to provide a satisfactory model for local variations in the observed data.
To overcome these problems, solutions that use finite mixture (FM-LR) models have

been recently proposed. For instance, Bartolucci and Scaccia (2005), So↵ritti and Galim-
berti (2011) and Galimberti and So↵ritti (2014) developed methods for linear regression
analysis by assuming a finite mixture of Gaussian (FM-N-LR) and Student-t (FM-T-LR)
components for the error terms.
The classic approach to finite mixture modeling has several challenging aspects. There

are nontrivial issues, like non-identifiability and an unbounded likelihood. In this context,
Holzmann and Munk (2006) established the identifiability of finite mixtures of elliptical
distributions under conditions of the characteristic or probability density function (PDF)
generators. More recently, Otianiano et al. (2015) established the identifiability of finite
mixture of skew-normal (Azzalini, 1985) and skew-t (Azzalini and Genton, 2008) distribu-
tions.
The class of SMSN distributions, proposed by Branco and Dey (2001), is attractive

since it simultaneously models skewness with heavy tails (Prates et al., 2012) and con-
tains as proper elements distributions such as the skew-normal, skew-t, skew-slash, skew-
contaminated normal and all the symmetric class of scale mixtures of normal (SMN)
distributions defined by Andrews and Mallows (1974). Besides this, it has a stochastic
representation for easy implementation of the Expectation-Maximization (EM) algorithm
(Dempster et al., 1977) and it also facilitates the study of many useful properties. Thus,
this extension results in a flexible class of models for robust estimation and inference in
FM-LR models.
The objective of this paper is to propose a mixture regression model (and associated

likelihood inference) based on the mixtures of the class of scale mixtures of skew-normal
(SMSN) distributions, by extending the mixture model based on symmetrical distributions.
An advantage of this model is the possibility of fitting multimodality, heavy tails and
skewness simultaneously. We derive a mixture model for the random errors based on the
class of SMSN distributions (FM-SMSN-LR model) and evaluate the performance of the
FM-SMSN-LR model by simulations. In order to motivate our research, we describe the
following example with a dataset from the Australian Institute of Sport data (AIS).

1.2 Motivating example

Before discussing the goal of this work, we present a motivating example. More specifically,
we extend the linear regression model proposed by Bartolucci and Scaccia (2005), which
is defined as

Yi = �0 + xi
>
��� + "i, f("i) =

gX

j=1

pj�("i|µj ,�
2

j ), i = 1, . . . , n,

where Yi is the response of case i, xi = (xi1, . . . , xip)> is a vector of explanatory variable
values, ��� = (�1, . . . ,�p)> is a vector of unknown linear parameters, pj are positive weights
summing to 1, the µj terms satisfy the constraint

Pg
j=1

pjµj = 0, �(.;µj ,�
2

j ) denotes
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Figure 1. Histogram with a kernel PDF estimate superimposed (a) and the boxplot of ordinary residuals (b) with

AIS data.

the PDF of the normal distribution, by assuming that the distribution of the error terms
follows a finite mixture of SMSN distribution, so that the FM-SMSN-LR is defined. It is
important to stress that our proposal is di↵erent from that of Zeller et al. (2016), where
the linear regression is modeled with di↵erent regression functions, the so-called mixture
of regressions or switching regression (Quandt and Ramsey, 1978). An important question
that is addressed in this paper is whether a mixture model (g � 2) is needed instead of a
one-component model. Thus, we use the parametric bootstrap log-likelihood ratio statistic,
which was proposed by Turner (2000).
To test our proposed model, we use the AIS data available in an R package named

FMsmsnReg. Figure 1 (panels a and b) displays the histogram with a kernel PDF estimate
superimposed and the boxplot of ordinary residuals, respectively, obtained by fitting a
N-LR model to the AIS data. The plots reveal the existence of multimodal residuals, with
evident presence of outliers. In summary, it is necessary to consider a more robust structure
in the error. Therefore, this example serves as a motivation for the FM-SMSN-LR model.

1.3 Organization of the paper

The remainder of the paper is organized as follows. In Section 2, we briefly discuss some
properties of the univariate SMSN family. In Section 3, we present the FM-SMSN-LR
model, including the EM-type algorithm for maximum likelihood (ML) estimation, and
derive the empirical information matrix analytically to obtain the standard errors. In
Section 4, numerical samples using both simulated and real data are given to illustrate
the performance of the proposed model. Finally, some concluding remarks are presented
in Section 5.

2. Background

2.1 Scale mixtures of skew-normal distributions

Next, we start by defining the skew-normal (SN) distribution and then we introduce some
useful properties. As defined by Azzalini (1985), a random variable Z has a skew-normal
distribution with location parameter µ, scale parameter �2 and skewness parameter � 2 R,
denoted by Z ⇠ SN(µ,�2

,�), if its PDF is given by

�SN(z|µ,�2
,�) = 2�(z|µ,�2)�

�
�(z � µ)/�

�
.
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The relation between the SMSN class and the SN distribution is provided in the next
definition.

Definition 2.1 A random variable Y has an SMSN distribution with location parameter
µ, scale parameter �2 and skewness parameter �, denoted by SMSN(µ,�2

,�;H), if it has
the stochastic representation

Y = µ+ 
1/2(U)Z, U?Z,

where Z ⇠ SN(0,�2
,�), U is a positive random variable with cumulative distribution

function H( · |⌫) indexed by a scalar or vector parameter ⌫ and (u) is a positive function
of u.

The mean and variance of Y are given respectively by

E[Y ] = µ+

r
2

⇡
K1�, Var[Y ] = �

2

⇣
K2 �

2

⇡
K

2

1�
2

⌘
, (1)

where � = ��, with � = �/
p
1 + �2 and Kr = E[U�r/2], r = 1, 2, . . .. Although we can

deal with any (·) function, in this paper we restrict our attention to the case where
(u) = 1/u, since it leads to good mathematical properties. Given U = u, we have that
Y |U = u ⇠ SN(µ, u�1

�
2
,�). Thus, the PDF of Y is expressed as

f(y) = �SMSN(y|µ,�2
,�,⌫) = 2

Z 1

0

�(y|µ, u�1
�
2)�

⇣
u
1/2

�(y � µ)/�
⌘
dH(u|⌫). (2)

When H is degenerate, with u = 1, we obtain the SN(µ,�2
,�) distribution, and when � =

0, the SMSN distribution reduces to the class of scale-mixtures of the normal (SMN) dis-
tribution represented by the PDF f0(y) = �SMN(y|µ,�2

,⌫) =
R1
0

�(y|µ, u�1
�
2)dH(u|⌫).

2.2 Special cases of the SMSN distributions

Some special families of SMSN distributions are the following:

• The skew-t distribution with ⌫ degrees of freedom. In this case, the PDF of Y takes the
form

�T(y|µ,�2
,�, ⌫) =

�(⌫+1

2
)

�(⌫
2
)
p
⇡⌫�

✓
1 +

d

⌫

◆� ⌫+1
2

T

 r
⌫ + 1

d+ ⌫
A|⌫ + 1

!
, y 2 R,

where d = (y � µ)2/�2, A = �(y � µ)/� and T (·|⌫) denotes the distribution function
of the standard Student-t distribution, with location zero, scale one and ⌫ degrees of
freedom, namely t(0, 1, ⌫). We use the notation Y ⇠ ST(µ,�2

,�, ⌫).
• The skew-slash distribution. It is denoted by Y ⇠ SSL(µ,�2

,�, ⌫) and the associated
PDF is given by

�SL(y|µ,�2
,�, ⌫) = 2⌫

Z
1

0

u
⌫�1

�(y|µ, u�1
�
2)�(u1/2A)du, y 2 R.

The skew-slash is a heavy-tailed distribution having as limiting distribution the skew-
normal one (when ⌫ ! 1).



Chilean Journal of Statistics 25

• The skew contaminated normal distribution. We denote it by Y ⇠ SCN(µ,�2
,�, ⌫, �).

Its PDF is given by

�SCN(y|µ,�2
,�,⌫) = 2{⌫�(y|µ, ��1

�
2)�(�1/2A) + (1� ⌫)�(y|µ,�2)�(A)}, ⌫, � 2 (0, 1].

The parameters ⌫ and � can be interpreted as the proportion of outliers and a scale
factor, respectively. The skew contaminated normal distribution reduces to the skew-
normal distribution when � = 1.

2.3 Computational framework

The R software (R Core Team, 2016) produces statistical analyses, with its open
source codes. This non-commercial computational program may be downloaded from
http://www.r-project.org. Our method was implemented in R and its codes are avail-
able through the FMsmsnReg package (Benites et al., 2016). We use the mixmsmsn package,
which allows the simulation of mixture the class of scale mixture of skew-normal distribu-
tions, see Prates et al. (2013). This computational framework is useful for conducting the
simulation studies and the empirical illustration carried out in Section 4.

3. The linear regression model with FM-SMSN errors

3.1 General context

Next, we introduce the linear regression model using finite mixture of skew heavy tailed
distributions where the distribution of the error terms follows a finite mixture of scale
mixture of skew-normal distributions (FM-SMSN-LR), following a similar setup as that
developed by Bartolucci and Scaccia (2005). Consider the linear regression model expressed
as

Yi = �0 + x>
i ��� + "i, i = 1, . . . , n, (3)

where Yi is the response of case i, xi = (xi1, . . . , xip)> is a vector of explanatory vari-
ables of dimension (p + 1) ⇥ 1, and ��� = (�1, . . . ,�p)> is the regression parameter vector.
Furthermore, we assume that

f("i) =
gX

j=1

pj�SMSN

�
"i|µj + b�j ,�

2

j ,�j ,⌫j
�
, i = 1, . . . , n, (4)

where pj are positive weights summing to 1, the µj s satisfy the identifiability constraint
Pg

j=1
pjµj = 0, b = �

p
2/⇡K1, K1 = E[U�1/2], �j = �j�j with �j = �j/

q
1 + �

2

j . Then

from Equation (1), we have that E("i) = 0. Thus, for linearity of SMSN distributions, the
PDF of Yi is expressed as

f(yi|✓✓✓) =
gX

j=1

pj�SMSN(yi|µij + b�j ,�
2

j ,�j ,⌫j), µij = �0 + x>
i ��� + µj = #j + x>

i ���, (5)

where µij = x>
i ��� + #j , #j = �0 + µj and ✓✓✓ = (���>

, (p1, . . . , pg�1)>,#1, . . . ,#g, �
2

1
, . . . ,

�
2
g ,�1, . . . ,�g, ⌫1, . . . , ⌫g)> is the vector with all parameters. Concerning the parameter ⌫j

of the mixing distribution H(.|⌫j), for j = 1, . . . , g, it can be a vector of parameters, e.g.,
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the contaminated normal distribution. Thus, for computational convenience we assume
that ⌫1 = . . . = ⌫g = ⌫. This strategy works very well in the empirical studies that we
have conducted and greatly simplifies the optimization problem. For U = 1, Equations (3)
and (4) lead to the FM-N-LR defined by Bartolucci and Scaccia (2005). Moreover, when
g = 1 and a nonlinear function is used instead of x>

i ���, the FM-SMSN-LR framework
reduces to the model discussed by Garay et al. (2011). For each i and j, consider the
latent indicator variable Zij , such that

Zij =

(
1, if the ith subject is from the jth component;

0, otherwise.

Observe that Zij = 1 if and only if Zi = j. Then

P (Zij = 1) = 1� P (Zij = 0) = pj and yi|Zij = 1 ⇠ SMSN
�
µij + b�j ,�

2

j ,�j ;H(⌫)
�
.

(6)
Note that by integrating out Zi = (Zi1, . . . , Zig)>, we obtain the marginal PDF presented
in Equation (2) and Z1, . . . ,Zn are independent random vectors, each one having a multi-
nomial distribution with PDF defined as f(zi) = p

zi1
1

p
zi2
2

...(1 � p1 � . . . � pg�1)zig , which
we denote by Zi ⇠ M(1; p1 . . . , pg). These latent vectors appear in the hierarchical repre-
sentation given next, which is used to build the Expectation Conditional Maximization
Either (ECME) algorithm as proposed by Liu and Rubin (1994), which is a variant of the
EM algorithm Dempster et al. (1977). From Equation (6) along with Definition 2.1, the
FM-SMSN-LR model can be represented as

Yi|ui, ti, Zij = 1
IND⇠ N(µij +�jti, u

�1

i �j), (7)

Ti|ui, Zij = 1
IND⇠ TN

�
b, u

�1

i , (b,1)
�
,

Ui|Zij = 1
IND⇠ H(ui;⌫),

Zi
IID⇠ M(1; p1 . . . , pg), i = 1, . . . , n, j = 1, . . . , g, (8)

where IND denotes independent, whereas IID stands for independent and identically dis-

tributed, with �j = (1� �
2

j )�
2

j , �j = �j�j and �j = �j/

q
1 + �

2

j .

3.2 Parameter estimation via the ECME algorithm

Next, we show how to implement the ECME algorithm for ML estimation of the parameters
of the FM-SMSN-LR model. By using Equations (7) to (8), we have that the complete-data
log-likelihood function is given by

`c(✓✓✓|y, t,u, z) = c+
nX

i=1

gX

j=1

Zij

n
log(pj)�

1

2
log(�j)�

ui

2�j
(yi � µij ��jti)

2

+ log(h(ui|⌫)) + log
⇥
�TN(ti|b, u�1

i , (b,1))
⇤o

,

where c is a constant that is independent of the parameter vector ✓✓✓. By defining the
quantities bzij = E[Zij |b✓✓✓, yi], bs1ij = E[ZijUi|b✓✓✓, yi], bs2ij = E[ZijUiTi|b✓✓✓, yi] and bs3ij =
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E[ZijUiT
2

i |b✓✓✓, yi], as having known properties of conditional expectation, we obtain

bzij =
bpj�SMSN(yi|µij + b�j ,�

2

j ,�j ,⌫)Pg
j=1

bpj�SMSN(yi|µij + b�j ,�
2

j ,�j ,⌫)
,

bs1ij = bzijbuij , bs2ij = bzij(buijbµTij
+cMTj

b⌧1ij ) and bs3ij = bzij(buijbµ2

Tij
+cM2

Tj
+cMTj

(bµTij
+b)b⌧1ij ),

where

b⌧1ij = E

"
U

1/2
i W�1

 
U

1/2
i bµTij

)

cMTj

!
| b✓✓✓, yi, Zij = 1

#
, i = 1, . . . , n, j = 1, . . . , g,

cM2

Tj
=

�j

�j +�2

j

, bµTij
= b+

�j

�j +�2

j

(yi � µij ��b) and buij = E[Uj |b✓✓✓, yi, Zij = 1].

Once again, at each step the conditional expectations buij and b⌧1ij can be easily derived
from the results given in Basso et al. (2010). Thus, the Q�function is given by

Q(✓✓✓|b✓✓✓
(k)

) = c+
nX

i=1

gX

j=1

✓
bz(k)ij (log(pj)�

1

2
log(�j)�

1

2�j

⇣
bs(k)
1ij(yi � µij)

2 � 2(yi � µij)�jbs(k)2ij

+ �2

jbs
(k)
3ij

⌘
+ E[Zij log(h(Ui|⌫))|b✓✓✓

(k)
, yi] + E[Zij log(�TN(Ti|b, u�1

i , (b,1)))|b✓✓✓
(k)

, yi]

◆
.

In the CML-step we update the estimate of ⌫ by direct maximization of the marginal
log-likelihood, circumventing the computation of the conditional expectations bs4ij =

E[Zij log(h(Ui|⌫))|b✓✓✓, yi] and bs5ij = E[Zij log(�TN(Ti|b, u�1

i , (b,1)))|b✓✓✓
(k)

, yi]. Thus, the
ECME algorithm for ML estimation of ✓✓✓ is defined as follows:

E-step: Given a current estimate b✓✓✓
(k)

, compute bzij , bs1ij , bs2ij , bs3ij , for i = 1, . . . , n and
j = 1, . . . , g.

CM-steps: Update b✓✓✓
(k)

by maximizing Q(✓✓✓|b✓✓✓
(k)

) = E[`c(✓✓✓)|y,b✓✓✓
(k)

] over ✓✓✓, which leads to
the closed-form expressions given by

bp(k+1)

j = n
�1

nX

i=1

bz(k)ij ,

b#(k+1)

j =

 
nX

i=1

�
bs(k)
1ij(yi � x>

i
b���)� b�(k)

j bs
(k)
2ij

�
!
/

nX

i=1

bs(k)
1ij ,

b���
(k+1)

=

0

@
nX

i=1

gX

j=1

bs(k)
1ijxix>

i

b�(k)
j

1

A
�1

nX

i=1

gX

j=1

1

b�(k)
j

[bs(k)
1ij(yi � b#

(k+1)

j )� b�(k)
j bs

(k)
2ij ]xi,

b�(k+1)

j =

 
nX

i=1

(yi � bµ(k+1)

ij )bs(k)
2ij

!
/

nX

i=1

bs(k)
3ij

b�(k+1)

j =
nX

i=1

⇣
bs(k)
1ij(yi � bµ

(k+1)

ij )2 � 2(yi � bµ(k+1)

ij )b�(k+1)

j s
(k)
2ij +

b�2(k+1)

j bs(k)
3ij

⌘
/

nX

i=1

bz(k)ij .
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CML-step: Update b⌫(k) by maximizing the current marginal log-likelihood function, ob-
taining

⌫(k+1) = argmax⌫

nX

i=1

log

0

@
gX

j=1

p
(k+1)

j �SMSN

⇣
yi|µ(k+1)

ij + b(⌫)�(k+1)

j ,�
2(k+1)

j ,�
(k+1)

j ,⌫
⌘
1

A.

Through constraint
Pg

j=1
pjµj = 0 (Bartolucci and Scaccia, 2005), we obtain the estimates

of �0 and µj as

b�(k+1)

0
=

gX

j=1

bp(k+1)

j
b#(k+1)

j and bµ(k+1)

j = b#(k+1)

j � b�(k+1)

0
,

respectively, for j = 1, . . . , g. This process is iterated until a suitable stopping criterion is
satisfied. To avoid an indication of lack of progress of the algorithm (McNicholas et al.,
2010), we adopted the Aitken acceleration method as the stopping criterion. At iteration k,
we first compute the Aitken acceleration factor c(k) = (`(k+1) � `

(k))/(`(k) � `
(k�1)), where

following Böhning et al. (1994), the asymptotic estimate of the log-likelihood at iteration
k + 1 is given by

`
(k+1)

1 = `
(k) +

1

1� c(k)

h
`
(k+1) � `

(k)
i
. (9)

As pointed out by Lindsay (1995), the algorithm is considered to reach convergence when

`
(k+1)

1 � `
(k+1)

< ", where " is the desired tolerance (we use " = 10�6). A usual criticism
is that EM-type procedures tend to get stuck in local modes. A convenient way to avoid
this limitation is to try several EM iterations with a variety of starting values. If there
are several modes, one can find the global mode by comparing their relative masses and
log-likelihood values. We suggest the following strategy: For �0 and ��� use the ordinary least-
squares (OLS) estimate. Initial values for pj , µj ,�

2

j , �j and ⌫, j = 1, . . . , g, are obtained
by fitting the mixture model given in Equation (3) to the OLS residuals (Bartolucci and
Scaccia, 2005), which can be done through the FMsmsnReg package (Benites et al., 2016).

3.3 Model selection and approximate standard errors

Consider the problem of comparing several FM-SMSN-LR models, with di↵erent numbers
of component PDFs. Here, we use two model selection criteria, the Akaike information
criterion plus a bias correction term (Hurvich and Tsai, 1989), denoted by (AICc), and the
adjusted Bayesian information criterion (Sclove, 1987), denoted by (BICa). These criteria
are defined as

AICc = �2`(b✓✓✓) + 2n⇢

n� ⇢� 1
and BICa = �2`(b✓✓✓) + ⇢ log

✓
n+ 2

2

◆
,

where `(✓✓✓) is the actual log-likelihood, ⇢ is the number of free parameters that have to be
estimated in the model, and n is the sample size.
A simple way of obtaining the standard errors of ML estimators of mixture model pa-

rameters is to approximate the asymptotic covariance matrix of b✓✓✓ by the inverse of the
observed information matrix. Let Io(✓✓✓) = �@

2
`(✓✓✓|y)/@✓✓✓@✓✓✓> be the observed information

matrix, where `(✓✓✓|y) is the observed log-likelihood function, which is obtained using Equa-
tion (5). In this work we use the alternative method suggested by Basford et al. (1997),
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which consists of approximating the inverse of the covariance matrix by

Io(b✓✓✓) =
nX

i=1

bsibs>i , where bsi =
@

@✓✓✓
log [f(yi|✓)]

����
✓✓✓=b✓✓✓

, (10)

where bsi = (bs>i,��� , bsi,p1 , . . . , bsi,pg�1 , bsi,#1
, . . . , bsi,#g

, bsi,�2
1
, . . . , bsi,�2

g
, bsi,�1

, . . . , bsi,�g
, bsi,⌫)>. It is

important to stress that the standard error of ⌫, obtained from bsi,⌫ , depends heavily on the

calculation of conditional expectation E[log(Ui)|yobsi ,b✓✓✓], which relies on computationally
intensive Monte Carlo integrations, since no analytical expression for this expected value
exists. Therefore, the expressions for the elements bs>i,��� , bsi,pj , bsi,#j

, bsi,�2
j
, bsi,�j

, for j = 1, . . . , g,
are given as

bs>i,��� =

PG
j=1

pjD���(yi;✓✓✓j)

f(yi;✓✓✓)
, bsi,#j

=
pjD#j

(yi;✓✓✓j)

f(yi;✓✓✓)
, bsi,�2

j
+

pjD�2
j
(yi;✓✓✓j)

f(yi;✓✓✓)
, bsi,�j

=
pjD�j

(yi;✓✓✓j)

f(yi;✓✓✓)
,

bsi,pj =
1

f(yi;✓✓✓)

⇥
�SMSN(yi|µij + b�j ,�

2

j ,�j ,⌫)� �SMSN(yi|µig + b�g,�
2

g ,�g,⌫)
⇤
,

with

D#j
(yi;✓✓✓j) =

@

@#j

⇣
�SMSN(yi|µij + b�j ,�

2

j ,�j ,⌫)
⌘
.

After some algebraic manipulation, we obtain

D���(yi;✓✓✓j) =
2q
2⇡�2

j

h
�
�2(yi � µij � b�j)I

�

ij(3/2)� �
�1

j �jI
�
ij(1)

i
xi,

D#j
(yi;✓✓✓j) =

2q
2⇡�2

j

h
�
�2

j (yi � µij � b�j)I
�

ij(3/2)� �
�1

j �jI
�
ij(1)

i
,

D�j
(yi;✓✓✓j) =

2p
2⇡�2

j

"
(yi � µij � b�j)b

(1 + �
2

j )
(3/2)

I
�

ij(3/2) +

 
(yi � µij � b�j)�

b�j

1 + �
2

j

I
�
ij(1)

!#
,

D�2
j
(yi;✓✓✓j) =

1q
2⇡�2

j

h
��

�2

j I
�

ij(1/2) + �
�4

j (yi � µij � b�j)
2
I
�

ij(3/2)

+ �
�4

j (yi � µij � b�j)b�jI
�

ij(3/2)� �j�
�3

j (yi � µij)I
�
ij(1)

i

where the expressions I�ij(w) and I
�
ij(w) are given in Basso et al. (2010). The information-

based approximation defined in Equation (10) is asymptotically applicable. However, it is
less reliable unless the sample size is su�ciently large. Observe that the asymptotic covari-
ance matrix of the ML estimates, that is, the inverse of Equation (10), was obtained using
the parametrization 'j = �0 + µj , j = 1, . . . , g. We can use the traditional delta method
(see Rao, 1973, Sec. 6a.2), to obtain standard errors using the original parameterization.
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Figure 2. Target mixture PDFs from simulated data in Scenario 1 (a) and Scenario 2 (b).

4. Numerical Studies

4.1 Parameter recovery (simulation study I)

We conduct three simulation studies to illustrate the performance of our proposed model.
The first simulation presented below reports the consistency of the approximate standard
errors for the ML estimators of parameters through the EM algorithm with each sample
under the stopping criterion in Equation (9), whereas the contents of the second and third
simulations are described in the corresponding subsections. In addition, we finish this
section of numerical studies with an empirical illustration based on real data.
Here, we consider two scenarios for simulation in order to verify if we can estimate the

true parameter values accurately by using the proposed ECME algorithm. This is the first
step to ensure that the estimation procedure works satisfactorily. We fit data that were
artificially generated from the following model with two components

f(yi|✓✓✓) =
2X

j=1

pj�SMSN(yi|µij + b�j ,�
2

j ,�j ,⌫), i = 1, . . . , n,

where Zij is a component indicator of Yi with P (Zij = 1) = pj , j = 1, 2, x
>
i = (xi1, xi2),

such that xi1 ⇠ U(0, 1) and xi2 ⇠ U(0, 1), for i = 1, . . . , n, and "1 and "2 follow a distri-
bution as in the assumption given in Equation (3). We consider the following parameter
values: �0 = �1, ��� = (�1,�2)> = (�4,�3)>, µ1 = �4, µ2 = 1, �1 = 1, �2 = �4 and
p1 = 0.2. In addition, we consider the following scenarios (depicted in Figure 2): scenario 1
(well separated components) with �

2

1
= 0.2 and �

2

2
= 0.4, and scenario 2 (poorly separated

components) with �
2

1
= 2 and �

2

2
= 2. For each combination of parameters, we gener-

ated 1000 Monte Carlo samples of size n = 1000 from the FM-SMSN-LR models, under
four di↵erent situations: FM-SN-LR, FM-ST-LR (⌫ = 3), FM-SSL-LR (⌫ = 3) and FM-
SCN-LR (⌫> = (0.1, 0.1)). The average values and standard deviations (MC SD) of the
estimators across the 1000 Monte Carlo samples were computed, along with the average
(IM SE) values of the approximate standard deviations of the estimates obtained through
the method described in the Subsection 3.3. Moreover, we compute coverage probability of
each parameter (COV), which is defined by COV(b✓) = (1/m)

Pm
j=1

I(✓ 2 [b✓L, b✓U]), where
I is the indicator function such that ✓ lies in the interval [b✓L, b✓U], with b✓L and b✓U being
estimated lower and upper bounds of the 95% CI, respectively. The results are presented
in Table 1. Note that under both scenarios (well and poorly separated components), the
results suggest that the proposed FM-SMSN-LR model produces satisfactory estimates.
It can bee seen from this table that the estimation method of the standard errors provides

relatively close results (IM SE and MC SD), indicating that the proposed asymptotic
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Table 1. Simulation study I: mean and MC SD are the respective estimated means and standard deviations

from fitting a FM-SMSN-LR model based on 1000 samples. IM SE is the average value of the approximate

standard error obtained through the information-based method. COV is the coverage probability. True

values of parameters are in parentheses.

Scenario 1: �2
1 = 0.2, �2

2 = 0.4 Scenario 2: �2
1 = �2

2 = 2

Parameter SN ST(⌫ = 3) SCN (⌫ = 0.1) SSL(⌫ = 3) SN ST(⌫ = 3) SCN (⌫ = 0.1) SSL(⌫ = 3)

�0(�1) Mean -0.9971 -1.0038 -0.9953 -0.9989 -1.0119 -1.0070 -0.9965 -1.0413

IM SE 0.0602 0.0859 0.0777 0.0883 0.1928 0.3345 0.2369 0.3238

MC SD 0.0698 0.0755 0.0713 0.0770 0.0925 0.1214 0.1324 0.1284

COV 90.6% 96.7% 96.6% 96.0% 99.4% 95.7% 91.8% 95.8%

�1(�4) Mean -4.0002 -3.9985 -3.9996 -3.9947 -3.9949 -3.9958 -3.9963 -4.0005

IM SE 0.0368 0.0418 0.0402 0.0423 0.0889 0.1021 0.0974 0.0985

MC SD 0.0365 0.0426 0.0403 0.0449 0.0899 0.1076 0.0950 0.1031

COV 94.7% 94.2% 95.5% 95.0% 95.0% 92.9% 95.4% 93.3%

�2(�3) Mean -3.0012 -2.9998 -3.0014 -2.9938 -2.9994 -2.9989 -2.9967 -3.0013

IM SE 0.0374 0.0424 0.0410 0.0432 0.0859 0.1005 0.0975 0.1020

MC SD 0.0370 0.0442 0.0413 0.0430 0.0836 0.1046 0.0977 0.1109

COV 95.6% 93.7% 94.0% 96.0% 96.2% 94.4% 94.2% 92.0%

µ1(�4) Mean -4.0026 -3.9945 -4.0040 -4.0166 -4.0295 -3.9806 -4.0899 -3.9924

IM SE 0.0853 0.0800 0.0894 0.0854 0.1396 0.2782 0.1896 0.2531

MC SD 0.0691 0.0876 0.0744 0.0859 0.1111 0.3161 0.2483 0.2202

COV 98.2% 99.8% 98.6% 98.6% 97.3% 92.3% 84.5% 94.8 %

µ2(1) Mean 0.9992 1.0012 1.0007 0.9945 0.9990 1.0103 1.0391 0.9955

IM SE 0.0837 0.0878 0.0862 0.0873 0.0744 0.1098 0.0861 0.0983

MC SD 0.0630 0.0625 0.0656 0.0625 0.0692 0.1000 0.1060 0.0813

COV 98.3% 99.7% 98.4% 99.0% 96.7% 96.7% 86.4% 97.7%

�2
1 Mean 0.2097 0.2089 0.2084 0.1946 2.0069 2.2009 1.9385 1.9221

IM SE 0.0680 0.0575 0.0643 0.0543 1.4238 0.9880 0.7385 1.5234

MC SD 0.0427 0.0639 0.0644 0.0539 0.5626 1.0118 0.8238 0.9698

COV 88.7% 89.8% 88.9% 89.0% 99.6% 87.3% 83.3% 89.1%

�2
2 Mean 0.3991 0.4026 0.3940 0.3988 2.0452 1.9839 1.8290 2.1521

IM SE 0.0274 0.0385 0.0343 0.0381 0.1978 0.3796 0.1898 0.2758

MC SD 0.0283 0.0501 0.0423 0.0463 0.1816 0.2642 0.3309 0.3109

COV 94.0% 85.9% 85.5% 88.0% 95.9% 93.7% 72.5% 89.2%

�1(1) Mean 1.0916 1.0534 1.0894 0.9679 1.1614 1.0068 0.6175 0.8514

IM SE 0.7420 0.4956 0.6466 0.4814 1.4279 1.0923 1.2206 2.7316

MC SD 0.8216 0.4983 0.6441 0.4385 0.4974 0.7792 1.3124 1.1426

COV 94.3% 96.3% 95.9% 98.0% 99.6% 96.9% 88.4% 92.4%

�2(�4) Mean -4.0874 -4.1108 -4.0739 -4.1418 -4.2153 -4.0168 -3.7773 -4.0682

IM SE 0.5446 0.5969 0.5971 0.6086 0.6299 0.8950 0.6262 0.6219

MC SD 0.5406 0.6141 0.6007 0.5477 0.5967 0.6555 0.8671 0.6494

COV 96.8% 95.5% 94.3% 96.0% 96.8% 94.5% 86.8% 93.6%

p1(0.2) Mean 0.1998 0.2004 0.1999 0.1985 0.1987 0.2033 0.2028 0.2000

IM SE 0.0126 0.0131 0.0130 0.0131 0.0146 0.2218 0.0159 0.0204

MC SD 0.0126 0.0125 0.0129 0.0127 0.0138 0.0235 0.0213 0.0191

COV 95.3% 95.8% 95.0% 94.0% 96.3% 92.9% 87.3% 94.6%

⌫ Mean - 3.0735 0.1070 2.9791 - 3.2216 0.1342 4.4543

�(0.1) Mean - - 0.1098 - - - 0.1415 -

approximation for the variances of the ML estimates of Equation (10) is reliable. Note
also that the coverage probability (COV) for the regression parameters is quite stable for
two scenarios, indicating that the proposed asymptotic approximation for the variance
estimates of the ML estimates is reliable.

4.2 Asymptotic properties of the EM estimates (simulation study II)

The main focus in this simulation study is to show the asymptotic properties of the EM
estimates. Our strategy is to generate artificial samples from the FM-SMSN-LR model
with x

>
i = (xi1, xi1), such that xi1 ⇠ U(0, 1) and xi2 ⇠ U(0, 1), for i = 1, . . . , n. We choose

sample sizes n = 100, 250, 500, 1000, 2500 and 5000. The true values of the parameters
were taken as �0 = �1, ��� = (�1,�2)> = (�4,�3)>, µ1 = �4, µ2 = 1, �2

1
= 0.2, �2

2
= 0.4

and p1 = 0.2. For each combination of parameters and sample sizes, we generated 1000
random samples from the FM-SMSN-LR models, under three di↵erent situations: FM-
SN-LR, FM-ST-LR (⌫ = 3), FM-SSL-LR (⌫ = 3) and FM-SCN-LR (⌫> = (0.1, 0.1)).
In order to analyze asymptotic properties of the EM estimates, we computed the bias
and the relative root mean square error (RMSE) for each combination of sample size and



32 Benites et al.

parameter values. For ✓i, they are given by

Bias(✓i) =
1

1000

1000X

i=1

(✓(j)i � ✓i) and RMSE(✓i) =

vuut 1

1000

1000X

i=1

(✓(j)i � ✓i)2,

where b✓(j)i is the estimate of ✓i for the jth sample. The results for �0, �1 and �2 are shown
in Figure 3; the results for µ1, �1 and �1 are shown in Figure 4; the results for µ2, �2, �2

are shown in Figure 5; and the results for p1 are shown in Figure 6. One can see a pattern
of convergence to zero of the bias and RMSE when n increases for all the parameters. As a
general rule, we can say that Bias and RMSE tend to approach zero when the sample size
increases, indicating that the estimates based on the proposed EM-type algorithm under
the FM-SMSN-LR model do provide good asymptotic properties.
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Figure 3. Average bias (1st row) and average RMSE (2nd row) of the estimators of �0,�1, �2 for simulation II.

4.3 Robustness of the EM estimates (simulation study III)

The purpose of this simulation study is to compare the e↵ect of the robustness of the
estimates of the FM-SMSN-LR models in the presence of outliers on the response variable.
We compare the FM-SN-LR, FM-ST-LR (⌫ = 3), FM-SSL-LR (⌫ = 3) and the FM-CN-
LR ((⌫, �) = (0.1, 0.1)) models. In this scenario, we generated 500 samples of size n = 500
of the FM-SMSN-LR model with f("i) =

P
2

j=1
pj�SMSN("i|µj + b�j ,�

2

j ,�j ,⌫). The true

values of the parameters were taken as �0 = �1, ��� = (�1,�2)> = (�4,�3)>, µ1 = �4,
µ2 = 1, �2

1
= 0.2, �2

2
= 0.4 and p1 = 0.2. To assess how much the EM estimates are

influenced by the presence of outliers, we replaced observation y150 by y150(�) = y150 + �,
with � = 1, 2, . . . , 10. For each replication, we obtained the parameter estimates with and
without outliers, with the three FM-SMSN-LR models.
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Figure 4. Average bias (1st row) and average RMSE (2nd row) of the estimators of µ1,�1, �1 for simulation II.
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Figure 5. Average bias (1st row) and average RMSE (2nd row) of the estimators of µ2,�2, �2 for simulation II.
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Figure 6. Average bias (1st row) and average RMSE (2nd row) of the estimators of p1 for simulation II.

We are interested in evaluating the relative change (RC) in the estimates as a function
of �. Given ⇥⇥⇥ = (�1,�2, p1, p2,✓✓✓1,✓✓✓2), with ✓✓✓j = (�0, µj ,�

2

j ,�j), j = 1, 2, the RC is defined
by

RC
⇣
b⇥⇥⇥i(�)

⌘
=

�����
b⇥⇥⇥i(�)� b⇥⇥⇥i

b⇥⇥⇥i

����� ,

where b⇥⇥⇥i(�) and b⇥⇥⇥i denote the EM estimates of ⇥⇥⇥i with and without perturbation, re-
spectively.
Figure 7 shows the average values of the relative changes undergone by all the parame-

ters. We note that for all parameters, the average RCs suddenly increase under FM-SN-LR
model as the � value grows. In contrast, for the FM-SMSN-LR models with heavy tails,
namely the FM-ST-LR (⌫ = 3) and FM-SCN-LR(⌫ = (0.1, 0.1)), the measures vary little,
indicating they are more robust than the FM-SN-LR model in the ability to accommodate
discrepant observations.

4.4 Empirical illustration

Next, the proposed techniques are illustrated with the analysis a real dataset, the one
previously analyzed by Cook and Weisberg (1982) in a normal regression setting. The
dataset comes from the Australian Institute of Sport (AIS) and consists of measurements
of 202 athletes. Here, we focus on percent body fat (Bfat), which is assumed to be explained
by the sum of skin folds (ssf) and height in cm (Ht). Thus, we consider the FM-SMSN-LR
model given by

Bfati = �0 + �1ssfi + �2Hti + "i, i = 1, . . . , 202,

where "i belongs to the FM-SMSN family.
By using the FMsmsnReg package (see the appendix), we fit the FM-SMSN-LR models as

was described in Section 3. Table 2 compares the fit of various mixture models for g = 1
to 5 components, using the model selection criteria discussed in Subsection 3.3. Note from
this table that, as expected, the heavy-tailed models perform significantly better than the
SN model (and the symmetric counterparts such as the normal and Student-t models),
with mixtures of two (g = 2) components being significantly better in all cases, except for
the normal case (FM-N), where a mixture of g = 3 is needed.
Moreover, the 2-component FM-ST-LR model fits the data substantially better. This

conclusion also is verified through a hypotheses procedure for testing the number of com-
ponents in the FM-ST-LR model. As reported by Turner (2000), we can use parametric
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Figure 7. Average RCs of estimates with di↵erent perturbations � for simulation study III.

Table 2. Comparison of maximum log-likelihood, AICc and BICA for fitted FM-SMSN-LR models using

the AIS data. The number of parameters is denoted by m.

Model g m log-lik AICc BICa

FM-N 1 5 -367.2395 744.7850 745.1792

FM-N 2 8 -359.2902 735.3265 735.7009

FM-N 3 11 -355.2892 733.9679 734.1192

FM-T 1 6 -363.9525 738.2111 738.6053

FM-T 2 9 -358.2494 733.2449 733.6194

FM-T 3 12 -356.3237 736.0369 736.1881

FM-SN 1 6 -363.0346 738.5001 738.9097

FM-SN 2 10 -356.3079 733.7675 734.0164

FM-SN 3 14 -354.1438 738.5336 738.2486

FM-SN 4 18 -353.1388 746.0152 744.7987

FM-SN 5 22 -352.2579 754.1695 751.5973

FM-ST 1 7 -360.7632 736.1038 736.5070

FM-ST 2 11 -353.9696 731.3286 731.4799

FM-ST 3 15 -353.8492 740.2790 739.7994

FM-ST 4 19 -352.3138 746.8034 745.2888

FM-ST 5 23 -351.7865 755.7752 752.7944

FM-SCN 1 8 -357.0375 738.5001 738.9097

FM-SCN 2 12 -353.7235 733.0978 733.1278

FM-SCN 3 16 -354.1656 743.2717 742.5722

FM-SCN 4 20 -352.0380 748.7169 746.8773

FM-SCN 5 24 -352.8184 760.4164 756.9983

FM-SSL 1 7 -362.3246 739.2264 739.6296

FM-SSL 2 11 -354.1580 731.7054 731.8566

FM-SSL 3 15 -354.1941 740.9689 740.4892

FM-SSL 4 19 -352.2586 746.6930 745.1785

FM-SSL 5 23 -352.3504 756.9031 753.9224
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Table 3. AIS data. Parameter estimates of the FM-SMSN- LR models with g = 2. SE denotes the corre-

sponding standard errors obtained via the information-based matrix.

Parameter FM-SN FM-ST FM-SCN FM-SSL

ML SE ML SE ML SE ML SE

�0 14.7241 0.0001 14.51593 0.00253 14.6622 0.0025 14.7475 0.0025

�1 0.1799 0.0012 0.17972 0.00850 0.1805 0.0089 0.1796 0.0091

�2 -0.0757 0.1302 -0.07536 0.19264 -0.0757 0.1458 -0.0754 0.1513

p1 0.1543 0.9295 0.15418 1.04192 0.1483 1.0841 0.1514 1.0393

µ1 2.5504 2.2932 1.93244 4.00942 2.3654 3.8355 2.3891 3.9553

µ2 -0.4652 1.8546 -0.35226 2.94875 -0.4120 2.5091 -0.4263 2.6266

�2
1 0.8483 0.5074 3.80681 1.57056 2.2957 1.6255 2.3158 1.6615

�2
2 2.2793 0.4021 1.06550 11.56693 1.1240 7.1021 0.9740 7.0029

�1 0.1624 0.8467 -5.70438 0.52991 -3.5415 0.4408 -4.8612 0.3724

�2 -2.2318 1.7509 -0.62860 9.52263 -1.0111 7.9389 -1.0144 11.9961

⌫ - - 7.45874 - 0.2270 - 2.3036 -

� - - - 0.3075 - -
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Figure 8. Panels (a) and (b) display the histogram ordinary residuals superimposed on the FM-SMSN-LR residual

PDF for g = 1 and g = 2 components, respectively with AIS dataset.

or semiparametric bootstrap to test hypotheses concerning the number of components in
the mixture. Following the method proposed by Turner (2000), we considered 1000 boot-
strap statistics for testing g = 1 versus g = 2, in which case the p-value was 0.027 for the
parametric bootstrap. Accordingly, there is strong evidence that at least two components
are needed. For testing g = 2 versus g = 3, the bootstrap p-value was 0.984, so there is no
evidence that more than two components are required to model the AIS dataset.
Table 3 presents the ML estimates of the parameters considering the four models with

g = 2, say FM-SN-LR, FM-ST-LR, FM-SCN-LR and the FM-SSL-LR, along with the cor-
responding standard errors (SE), obtained via the information-based procedure presented
in Subsection 3.3. Notice from Table 3 that the small value of the estimate of ⌫ for the
FM-ST-LR and FM-SSL-LR models indicates a lack of adequacy of the SN assumption.
In Figure 8, we plot the histogram of OLS residuals and then display the residual PDFs

for the four FM-SMSN-LR models superimposed on a single set of coordinate axes, with
g = 1 and g = 2 components respectively. Additional results related to g = 3 and g = 4
components are given in Figure 10. Based on this graphical representation, it appears once
again that the FM-ST-LR, FT-SCN-LR and the FT-SSL-LR models have quite reasonable
and better fit than the FM-SN-LR model with g = 2 components.
In order to detect incorrect specification of the error distribution for our best model

(FM-ST-LR), we present quantile versus quantile (QQ) plots and simulated envelopes for
the residuals (y� ŷ) in Figure 9. The QQ plots for the other models are given in Figure 11.
This figure provides strong evidence that the FM-ST-LR (with g = 2 components) yields
a better fit to the current data than the ST-LR model (with g = 1 component), since there
are no observations falling outside the envelope.
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Figure 9. Panels (a) and (b) display the QQ plots and simulated envelopes for the residual (y � by) with for g = 1

and g = 2 components, respectively with AIS dataset.
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Figure 10. Panels (a) and (b) display the histogram of ordinary residuals with FM-SMSN-LR residual with for

g = 3 and g = 4 components, respectively with AIS dataset.
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Figure 11. Panels (a), (b) and (c) display the QQ plots and simulated envelopes for the residual (y � by) for g = 2

components based on FM-SN, FM-SCN and FM-SSL distributions, respectively with AIS dataset.

5. Conclusions

In this paper we consider a regression model whose error term follows a finite mixture of
SMSN distributions, which is a rich class of distributions that contains the skew-normal,
skew-t, skew-slash and skew-contaminated normal distributions as proper elements. This
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approach allows us to model data with great flexibility, simultaneously accommodating
multimodality, skewness and heavy tails for the random error in linear regression models.
It is important to stress that our proposal is di↵erent from that of Zeller et al. (2016), where
they use a finite mixture of linear regression models, the so-called switching regression.
In this paper, instead of mixtures of regressions, mixtures are exploited as a convenient
semiparametric method, which lies between parametric models and kernel PDF estimators,
to model the unknown distributional shape of the errors. For this structure we developed
a simple EM-type algorithm to perform ML inference of the parameters with closed-form
expression at the E-step. The proposed methods are implemented using the FMsmsnReg

package, providing practitioners with a convenient tool for further applications in their
domain. The practical utility of the new method is illustrated with the analysis of a real
dataset and several simulation studies.
The proposed methods can be extended to multivariate settings using the multivariate

SMSN class of distributions (Cabral et al., 2012), such as the recent proposals of Sof-
fritti and Galimberti (2011) and Galimberti and So↵ritti (2014). Due to the popularity of
Markov chain Monte Carlo techniques, another potential work is to pursue a fully Bayesian
treatment in this context for producing posterior inference. The method can also be ex-
tended to mixtures of regressions with skewed and heavy-tailed censored responses, based
on recent approaches by Caudill (2012) and Karlsson and Laitila (2014).

Appendix: Sample output from the FMsmsnReg package

------------------------------

Finite Mixture of Scale Mixture Skew Normal Regression Model

------------------------------

Observations = 202

Family = Skew.t

------

Estimates

------

Estimate SE

beta0 14.51593 0.00253

beta1 0.17972 0.00850

beta2 -0.07536 0.19264

mu1 1.93244 4.00942

mu2 -0.35226 2.94875

sigma1 3.80681 1.57056

sigma2 1.06550 11.5669

shape1 -5.70438 0.52991

shape2 -0.62860 9.52263

pii1 0.15418 1.04192

nu 7.45874 NA

------------

Model selection criteria

------------

Loglik AIC BIC EDC ICL

Value -357.030 730.235 766.626 739.502 2916.687

----

Details

----

Convergence reached? = TRUE

EM iterations = 147 / 500

Criteria = 1e-07

Processing time = 27.11465 secs
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