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Abstract

We consider the estimation of the link function as well as the parameter vector of a single-
index model under a purely Bayesian perspective by using P-splines and assuming errors
distributed according to a scale mixture of Normals. This approach includes, among
others, the Gaussian distribution itself and the Student-t distribution. We have made
explicit all the details of the MCMC algorithm used to sample the parameters of interest
according to the posterior distribution, including all the posterior full conditionals and
Metropolis-Hastings steps. The results of the suggested procedure has been tested and
shown through simulation study and an application to real data.
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1. Introduction

Single-Index models are a way to overcome the well-known Curse of Dimensionality, typical
of nonparametric multivariate models. In this paper, the noise was allowed to follow a scale
mixture of Gaussians which represents a broader class of distributions than the usual class
of Normal distributions. In fact, besides the Gaussian distribution itself, such class includes,
among others, the Student’s t distribution and the Stable family. All elements of this class,
with the exception of the Normal distribution, are heavy tailed and, therefore, they are
useful in making models resistant to outliers and extreme values.

The single-index model (SIM) is given by

yt = g(β′xt) + δεt, (1)

for t = 1, . . . , T , where g is known as the link function and the parameter vector β is
known as the index vector. We want to estimate such components under the assumption
that εt follows a scale mixture of Normals and that xt is a p-dimensional input vector by
using Bayesian P-splines. Since β is only identifiable up to a multiplicative constant, we
impose that β′β = 1.

Single-index models have been approached in several ways, especially in cases where the
noise is Gaussian. The classical approaches often use splines or kernel and consist usually
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of a two-step procedure, where the vector index is estimated in one step, and the link
function is estimated in the next one. See, for example, Yu et al. (2002) and the references
therein.

Despite the consistency of the estimators, a drawback that has persisted in the classical
approach is the numerical instability and, as noted by Antoniadis et al. (2004), a Bayesian
approach offers the hope of more stable estimates. They use a hybrid approach in which the
parameters are generated via MCMC (Bayesian approach) and one of the hyperparameters
is obtained via regularization (classic approach). Although much of our attention is in the
combination of a Bayesian approach with the application of splines to Single-Index models,
other different approaches related to them are available and we cite, as an example, Park et
al. (2005) who estimate the target function by using wavelets. Even though such works are
related to this article, we believe to be the first to enable the simultaneous use of a general
class of distributions (the scale mixture of Gaussians) and the function approximation
method via P-splines to calibrate a SIM under a purely Bayesian setup.

This paper is organized as follows. In sections 2 and 3, we briefly review and introduce
the concepts used here. In section 4, we define the priors of the parameters of interest. In
section 5, we derive the posterior full conditional distributions and the Metropolis-Hastings
steps used in the MCMC algorithm. Finally, in section 6, we illustrate the proposed method
through simulation and an application to real data.

2. Observation Model

A random variable Y is said to follow a scale mixture of Normals (SMN) if it can be
written as Y = Z/

√
σ, with Z ∼ N (0, 1) and σ being any positive (continuous or discrete)

random variable. The distribution H associated to σ is called mixture distribution and it
determines the particular distribution X will follow. Whenever H is absolutelly continuous,
the probability density functions of X and σ (denoted by h) will be connected by the
following expression

p(y) =

∫ ∞
0

σ1/2φ(σ1/2y)hζ(σ)dσ,

where φ is the pdf of the standard normal distribution and ζ stands for the vector of
parameters and possibly hyperparameters associated to the mixture distribution. It is not
the scope of this paper to give a detailed account of SMN distributions, so for a more
comprehensive treatment on this subject we refer to Andrews et al. (1974) and Fernandez
et al. (2000). It should be enough to say that such class is quite large in the sense that it
contains all continuous and symmetric distributions, see Fang et al. (1989).

From a distributional perspective, we can write

yt|xt;σt ∼ N
(
g(β′xt),

δ2

σt

)
,

σt ∼ hζ ,
(2)

where yt is the dependent variable in model (1) and ζ is just a parameter vector which
determines the prior distribution of σ. Here, σt is not observable and so it plays the role
of a latent variable. From (2), it follows that

p(yt|xt) =

∫ ∞
0

σ
1/2
t

δ
φ

(
σ

1/2
t

δ
(yt − g(β′xt))

)
hζ(σt)dσt,



Chilean Journal of Statistics 5

which is just a scaled and shifted version of p(x) as given above.

3. Splines Setup

In order to estimate the link function, we follow Wang et al. (2009) and do not approx-
imate g directly, but instead a variant G ≡ g ◦ F−1

p , where Fp is the rescaled centered

Beta((p+ 1)/2, (p+ 1)/2) c.d.f1,

Fp(ν) =

∫ ν/a

−1

Γ(p+ 1)

Γ
(
p+1

2

)2
2p

(1− v2)
p−1

2 dv, ν ∈ [−a, a],

and we refer to G as the link function. Before justifying the choice for this transformation,
assume the pdf pX of the input random vector Xt satisfies the following assumptions.

Assumption 1: The support of the pdf pX , denoted by X , is a compact subset of Rp.

Assumption 2: There exist constants 0 < κ` ≤ κu < ∞ and a closed ball in B = {x ∈
Rp|‖x‖ ≤ a} containing X s.t.

κ`
V (Ba)

≤ pX(xt) ≤
κu

V (Ba)
,

for every xt ∈ X . (Notice that this is the same a used in the Fp).

Following the same steps as in Wang et al. (2009), but noting that the assumptions con-
cerning the distribution of X are now comparatively more relaxed in the sense that
its support no longer needs to coincide with the closed ball Ba, one can show that the
transformed random variable Uβ ≡ Fp(Xβ) is quasi-uniformly distributed on [0, 1] (see
Appendix A as well) in the sense that its density function is completely bounded, i.e.
0 < κ` ≤ p(uβ,t) ≤ κu < ∞, where uβ,t ≡ Fp(x

′
tβ). Therefore, it is reasonable to use

equally spaced knots over the unit interval [0, 1], corresponding to the B-splines base. It
should be noted yet that there is another possibility that should not be ruled out. Namely,
the direct estimation of g from the data without the intermediation of Fp. However, this
would turn out the choice of an appropriate set of the knots corresponding to the B-splines
considerably more difficult, in the sense that they should be chosen, in this case, essentially
based on the observed data. Unfortunately, such kinds of algorithms and strategies are not
in the scope of this article.

The link function G is said to be a spline if it is a piecewise polynomial function of some
arbitrary order k and some degree of smoothness which is used to guarantee continuity and
differentiability up to a pre-determined order. Informally, as outlined in Eilers et al. (1996),
a B-spline, B, of order k is a function with compact support consisting of k+1 polynomial
components of order k continuously connected in the inner knots. These features are very
interesting since they strongly simplify analysis and computational implementation, but
for more specific details on the construction of a spline basis, we refer the reader to de
Boor (2001). To estimate G, we write it as a linear combination of B-splines, G(u) =∑M

i=1 aiBi(u), where M is the number of elements in the basis and Bi is its ith member.
Hence y = B(β)a + δε, where ε = (ε1, ..., εT )′ and B(β) = (Bj(uβ,i))i,j , with i = 1, ..., T
and j = 1, ...,M . In particular, by conditioning ε on the latent variables σt, it follows that
y|σ;a,β, δ2 ∼ N

(
B(β)a, δ2W

)
, with W = diag(σ−1

1 , ..., σ−1
T ).

1Fp is the c.d.f. of the r.v. a(2V − 1), where V is Beta((p+ 1)/2, (p+ 1)/2).
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The larger the number of knots, the more the estimated function tends to interpolate
the observed data, resulting then in a high variance estimate. To avoid this, Eilers et al.
(1996) suggests penalizations on the adjacent splines coefficients (P-splines),

λ

M∑
j=d+1

(∆daj)
2, (3)

where λ plays the role of a smoothing parameter and ∆ is the difference operator defined
by ∆aj = aj − aj−1. This approach is computationally very attractive when compared
to other kinds of penalization methods such as smoothing splines and it can be briefly
represented by using the matrix form of the operator difference, denoted here by K̃d or
just K̃ if no reference to d is necessary.

Under the Bayesian approach, penalties as in (3) are replaced by their stochastic counter-
parties. The most natural choice would be to write them as random walks as, for example,
a first order random walk in the case of first differences, and second-order random walks
in the case of second differences, aj = aj−1 + uj or aj = 2aj−1 − aj−2 + uj , where {uj}
are white noise. Lang et al. (2004) assume that uj |τ2 ∼ N (0, τ2) and that a1, or a1 and
a2, have noninformative priors. It is interesting to notice that τ2 works as the inverse of
the smoothing parameter λ as used in the frequentist case. However, a consequence of the
above definition is that

p(a|τ2) ∝ exp

(
− 1

2τ2
a′K̃a

)
, (4)

and since K̃ is singular (rank K̃ = M − 1), the prior (4) is improper and, keeping K̃ this
way, it would force us to impose conditions on the splines and data to guarantee a proper
posterior. Instead we chose to adapt (4) by suggesting the modified version

p(a|τ2) ∝ exp

(
− 1

2τ2
a′(K̃ + λaI)a

)
, (5)

where I is a M ×M identity matrix and λa > 0 is a (small) tuning parameter, inspired
on ridge regressions, in order to make the prior distribution proper. In order to get some
intuition behind the parameter λa we notice that (5), as well as (4), imposes a to be priorly
distributed as a Normal random variable, both with the same covariance structures, but
with different variances (i.e. larger in the modified version). In practical terms, this means
assigning a comparatively less informative priori to a, but essentially maintaining the same
statistical relationships (correlations) among its elements. In other words, the inclusion of
λa moves the distribution of a from a proper subspace of the M -dimensional Euclidean
space to the entire space.

Another important issue to be considered is the one about the selection of λa and, of
course, the underlying error distribution. There are many ways to address this problem
and perhaps the most well known methods are the cross-validation or generalized cross-
validation as in Hastie et al. (2001). However, there are other examples that could be
included in such a list and with, say, a Bayesian flavor. In fact, we could consider (i)
the proposal in Park et al. (2008) for the Bayesian Lasso, which is based on the use of
a Monte Carlo EM algorithm to provide maximum likelihood estimates of the smoothing
parameter at each iteration of the algorithm, or (ii) the log-pseudo marginal likelihood
(LPML) as suggested by Geisser et al. (1979). Another approach, connected to the idea
of cross-validation, would be the use the of the leave-one-out cross-validation using the
simulated values of the parameters in the MCMC algorithm or even the smoothed leave-
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one-out cross-validation as discussed in Vehtari et al. (2017), which is just a way of properly
approximating the predictive density when one data point is removed from the sample,
i.e. p(yt|y(−t)). In this paper, λa was chosen empirically by comparing metrics based on
DIC, cross-validation and out-of-sample values. It is worth noting, however, that, as our
experience indicates, small values of λa (∼ 0.01) work generally equally well. On the other
hand, larger values of λa (� 1) tend to excessively smooth the target function estimate.
Finally, as a last remark, we will agree that to keep notation simple, we will denote from
now on K̃ + λaId just by K.

As a last remark in this section, notice that conditioning y on the latent random vector
σ, we have

log p(a,β, δ2, τ2;σ, ζ|y) ∼=
1

2δ2
(y −B(β)a)′W−1(y −B(β)a)− 1

2τ2
a′Ka, (6)

where ∼= stands for equality up to an additive constant (i.e. all additive terms unrelated
to a in the right side of (6) were omitted for simplicity). Hence the posterior maximum
likelihood estimate of a corresponds to a penalized weighted least-squares estimate.

4. Likelihood and Priors

We have already set up priors for the B-splines coefficients a, so that a|τ2 ∼ N (0, τ2K−1).
Now we do the same to the other priors as follows.

4.1 Likelihood and Modeling by Using Latent Variables

Modeling data as in (2), we get y|σ ∼ N
(
B(β)a; δ2W

)
, where σt

iid∼ h and W =(
σ−1

1 , ..., σ−1
T

)
. Of course, the above random variables are conditioned on the transformed

inputs uβ,t. The random variables σt work as weights which neutralize the effects of ex-
treme values or outliers on the estimate. Besides, such hierarchical structure, which is a
consequence of the use of the latent variables σt, turns the data analysis much simpler.

4.2 Priors

• Index Vector (β): For β, we assume a von Mises-Fisher distribution with concentration
parameter κ and mean direction βprior as prior:

p(β|βprior, κ) =
κp/2−1

(2π)p/2Ip/2−1(κ)
exp{κβ′priorβ},

where Ip/2−1 denotes the Bessel function of first kind.

• Scale and Smoothing Parameters (δ2 and τ2): We assume an Inverse-Gamma
prior distribution for the scale and smoothing parameters. More precisely, we set δ2 ∼
IG(α0, γ0) and τ2 ∼ IG(α1, γ1), so that

p(δ2|α0, γ0) =
γα0

0

Γ(α0)
(δ2)−α0−1 exp

{
−γ0

δ2

}
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and

p(τ2|α1, γ1) =
γα1

1

Γ(α1)
exp

{
−γ1

τ2

}
,

where αi, γi > 0, for i = 0, 1.

• Mixture Distribution Parameters and Hyperparameters (ζ): The prior distri-
bution of ζ must be set up on a case-by-case basis since it obviously depends on the
mixture distribution hζ . If there is no such parameter or if it is already known, we may
leave this prior aside and proceed the analysis without it.

5. Sampling Scheme

We sample the parameters from their joint posterior distribution via the Metropolis-within-
Gibbs algorithm, since it is not possible to represent the full conditional distributions for
all parameters as well as the full conditional distribution for the latent variables σt in
terms of standard distributions. We assume that ζ is known, but later we will see the case
where the degrees of freedom (ζ = ν) of the Student’s t distribution is unknown. One can
find the derivation of the full conditionals in Appendix.

• B-splines coefficients (a): a|y,x,σ;β, δ2, τ2 ∼ Np (m; ∆), with

∆ ≡
(

1

δ2
B(x;β)′W−1B(x;β) +

1

τ2
Kd

)−1

and m ≡ 1

δ2
∆B(x;β)′W−1y.

• Scale parameter (δ2): δ2|y,x,σ;a,β, τ ∼ IG
(
α0 + T

2 , γ0 + 1
2r(β,a)′W−1r(β,a)

)
,

and r(β,a) ≡ y−B(x;β)a is defined as the vector of residuals given the parameters β
and a.

• Smoothing parameter (τ2): τ2|y,x,σ;a,β, δ2 ∼ IG
(
α1 + M

2 , γ1 + 1
2a
′Ka

)
.

• Latent vector (σ): the former full conditional distributions were explicitly derived,
but this is not possible for σ, β and, when appropriate, ζ. For σ, we have

p(σ|y,x;a,β, δ2, τ2) ∝
T∏
t=1

p(yt|x, σt;a,β, δ2)h(σt|ζ)

∝
T∏
t=1

σ
1/2
t exp

{
−rt(β;a)2

2δ2
σt

}
h(σt|ζ),

where rt(β;a) is the tth component of r(β,a), and it is possible to reduce dimensionality
by sampling one σt at a time for t = 1, ..., T . However, depending on h(·|ζ), it is not
possible to represent the posterior full conditional distribution of σ as some standard
distribution. To overcome this difficulty, a Metropolis-Hastings step is introduced into
the Gibbs sampler. Of course, h could be used as a prior proposal (σ∗t ∼ h(σt|ζ)).
However, one must be aware that if the likelihood p and the prior (and proposal) h
are not concentrated over the same region, this method would be inefficient, and a
more sophisticated approach would be necessary. On the other hand, fortunately, there
are some interesting cases for which the above posterior distribution may be written
explicitly (see Fernandez et al. (2000) and the Appendix).
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• Linear component (β): the (posterior) full conditional distribution is given by

p(β|y,x,σ;a, δ2, τ2) ∝ p(y|x,σ;a,β, δ)1I(β′β = 1 and β1 > 0),

and since this distribution does not match up with any standard distribution, we use
a Metropolis-Hastings step to sample from it. The von Mises-Fisher distribution, with
mean direction β0 and concentration parameter κ > 0, is taken as proposal, so that,
given β0 (the vector sampled in the previous step of the algorithm),

β =

{
β0, with probability 1− ρ(β0,β

∗),

β∗, with probability ρ(β0,β
∗),

where

ρ(β0,β∗) = min

{
exp

{
− 1

2δ2
(r∗ − r0)′W−1(r∗ + r0)

}
, 1

}
,

is the acceptance probability with r∗ ≡ r(β∗,a) and r0 ≡ r(β0,a).

To conclude the section, we would like to note that, in relation to the sensitivity of
the prior distributions as considered above with respect to their hyperparameters, we
have tried, along the data analysis, for both simulations and application, several different
configurations for such hyperparameters, and, from our experience, we have noticed that
data fitting is quite robust with respect to these choices in the sense that the sampled values
(through the MCMC algorithm) tend in any case to oscillate around the real parameter
values (as in the simulation cases), and around very similar values (as in the case of the
application).

5.1 A Note on Sampling the Degrees of Freedom for Student’s t Errors

There are some alternatives to sample the degrees of freedom of the Student’s t distribu-
tion when they are unknown (for further details, we refer the reader to Geweke (1993),
the references therein, and to Fonseca et al. (2008)). However, since the specific analy-
sis of the Student’s t case is not the focus of this article, we have decided to follow the
specifications in Cabral et al. (2012) and Bandyopadhyay et al. (2015) and to assume
a hierarchical structure for the prior distribution of ν. More precisely, we assume that
ν|λ follows a (left) Truncated Exponential distribution at ν0 with parameter λ, so that
ν − ν0 ∼ Exponential(λ) (ν ≥ ν0 ≥ 0), and, as for parameter λ, it is assumed to follow
an Uniform distribution on the interval (λ`, λu). In particular, it should be noticed that a
suitable choice of ν0 (e.g. ν0 = 2) guarantees the suitable property of finite variance for the
errors associated with the model. Regarding the hyperparameters λ` and λu, they can be
chosen by imposing bounds on the moments of ν. For example, Cabral et al. (2012) fixed
λ` = 0.02 and λu = 0.5, so that the expected value of ν is in the interval [2, 50] — the
same bounds adopted by Bandyopadhyay et al. (2015). The derivations of the expressions
below can be found in Appendix C. The posterior full conditional is given by

p(ν|y,x,σ;a,β, δ2, τ2) ∝
(
ν
2

)Tν
2

Γ
(
ν
2

)T exp

{
−ν

(
1

2

T∑
t=1

(σt − log σt) + λ

)}
1I(ν > ν0). (7)

Metropolis-Hastings is used to sample ν from (7) and the proposal distribution was chosen
to be the exponential distribution with parameter λ∗ (to be calibrated on a case-by-case



10 Taddeo and Morettin

basis).
Just as a final remark, since Metropolis-Hastings was already used to sample β, these

two similar steps inside the Gibbs algorithm could be reduced to a single one as suggested
by Müller (1993), with the effect of reducing the rejection rate of the proposals. This would
produce a global approximation for the posterior full conditional of β and ν, instead of
local approximations. Derivations are very similar to those in Appendix C and, for the
sake of brevity, shall be omitted.

6. Examples

6.1 Simulation Study

For the sake of comparison, this simulation study follows almost the same setup pro-
posed by Antoniadis et al. (2004). A sample of size 100 was generated according to the
model defined by the link function g(u) = u2eu/4, vector index β = (2, 1, 1, 1)′/

√
7 =

(0.756; 0.378; 0.378; 0.378)′ and predictors xt independently and uniformly generated from
the hypercube [−3, 3]4. The link function was approximated by cubic B-splines with the
smoothing matrix K̃ determined by taking second differences and M chosen empirically
by assessing the estimation performance for several different values by means of metrics
such as DIC, deviance and mean squared error. Some differences with Antoniadis et al.
(2004) are inevitable due to the distinct data sets and some idiosyncrasies of the estima-
tion methods. In fact, in Antoniadis et al., the noise is assumed to be Normal, while we
assumed a heavier tailed Student’s t distribution with 2.2 degrees of freedom and scale
parameter δ2 = 1. Moreover, we use P-splines with smoothing order (d = 2), while in
Antoniadis et al. (2004), the penalization is directly over ‖a‖2. The dispersion of the data
set around the link function and the histogram of the residuals under the severe scenario
can be seen in Figure 1. Such severity, in particular, can be noticed in Figure 1(a) by the
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Figure 1. 1(a): Link function and the simulated data under Student’s t errors with ν = 2.2. 1(b) Histogram of the
theoretical residuals (i.e. calculated with the true parameters) of the simulated model.

presence of a very extreme value, which is in fact caused by the noise, whose distribution
is extremely heavy tailed.

As an illustration, Table 1 shows the effect of M over the model estimate. Increasing
M , makes the link function estimate tend to interpolate data and so it is expected that
the deviance will also be greater. The average deviance on the other hand is expected
to decrease as the number of parameters increase, and so the combination of both (the
deviance information criterion, or DIC) would lead us to large values of M . However these
values also imply greater complexity (average deviance minus deviance), so a compromise
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between these values suggest an intermediate value of M = 65. This choice is clearly
supported by the posterior MSE of the predicted responses and β.

Table 1. Model assessment by the number of elements in the splines basis (M). Mean square error, point estimate

deviance, average deviance and DIC (ν = 3).

M 30 40 50 60 70 80 90 100 200
MSE (β) 0.79 0.68 0.64 0.52 0.45 0.53 0.59 0.69 0.82
MSE 11.10 6.53 5.89 2.88 3.27 3.36 8.99 10.29 45.17
Deviance 680.45 709.24 732.59 743.84 760.04 764.70 772.90 770.92 868.32
Avg Dev 595.01 574.20 547.05 528.39 508.38 495.31 469.24 464.92 438.84
DIC 509.57 439.17 361.52 312.94 256.72 225.92 165.57 158.92 9.36

Regarding the proposal distribution for β, we accept the value suggested in Antoniadis et
al. (2004) and set up the concentration parameter κ equal to 1000. As in the aforementioned
article, we estimated the parameters of interest by taking the posterior means of the 8000
generated values after the burn-in period of size 2000. We set the prior parameters for the
scale δ2 as γ0 = α0 = 400 and for τ2, we set α1 = 100 and γ1 = 8000.

To estimate the degrees of freedom related to the error distribution, we considered several
values of ν and the results can be seen in Table 2. Based on the same rationale as before,
we decided to take ν = 2.5 which is not far from the actual value of 2.2. Moreover, by

Table 2. Model assessment by degrees of freedom (ν). Mean square error, point estimate deviance, average deviance

and DIC (M = 65).

ν ∞ 2 3 4 5 6 7
MSE (β) 0.64 0.60 0.49 0.65 0.54 0.72 1.19
MSE 3.19 2.75 1.59 2.36 3.37 7.59 10.01
Dev 2,885.63 657.08 733.39 751.54 809.74 848.27 891.82
Avg Dev 670.53 545.96 511.45 583.17 604.17 617.99 624.66
DIC -1,544.58 434.84 289.52 414.79 398.61 387.71 357.50

considering subsamples of the same data set of sizes T ′ = 25 and T ′ = 50 (Tables 3
and 4) we see as expected that an appropriate choice for the error distribution becomes
significantly more important for smaller data sets.

Table 3. Model assessment by degrees of freedom (ν) with 25 data points. Mean square error, point estimate

deviance, average deviance and DIC (M = 65).

ν ∞ 2 3 4 5 6 7
MSE (β) 0.52 0.70 0.70 0.69 0.68 0.64 0.58
MSE 10.98 7.18 8.15 10.87 8.67 8.50 6.20
Dev 830.83 189.83 200.05 225.23 236.16 237.29 240.87
Avg Dev 171.41 134.00 133.67 137.45 137.92 136.85 142.87
DIC -488.01 78.19 67.29 49.67 39.68 36.42 44.88

Table 4. Model assessment by degrees of freedom (ν) with 50 data points. Mean square error, point estimate

deviance, average deviance and DIC (M = 65).

ν ∞ 2 3 4 5 6 7
MSE (β) 0.75 0.57 0.65 0.42 0.50 0.58 0.54
MSE 16.24 5.54 8.75 19.53 7.51 7.78 7.11
Dev 1,393.01 342.82 380.00 458.47 465.77 479.72 496.33
Avg Dev 416.28 223.96 230.79 232.29 238.77 238.84 256.69
DIC 25.50 105.10 81.58 6.11 39.68 -2.05 17.04

The graphs in Figure 2 illustrate (i) how the observed data are sparse (because of the
heavy tails of the distribution attributed to noise), and (ii) how well the estimated curve
fits the data and thus approximates quite satisfactorily the link function. Notice that



12 Taddeo and Morettin

*** *
**

*
*
*

*

***
*

*

*
*

*

*

*
*

*

*
*
*
**

*
*
**

*

*

*

* **
*

*
**

*
*

* *
*
*

*

*
*

**
***

**
*
** ****

*

*

**
*
*

**
*
****
***
******

*

*

*
*
*
*
*
*

*

**

*

*

*

0.0 0.2 0.4 0.6 0.8 1.0

−
5

0
5

10
15

20
25

U

y

Link Function
Estimate

(a) Student’s t

*** *
**

*
*
*

*

***
*

*

*
*

*

*

*
*

*

*
*
*
**

*
*
**

*

*

*

* **
*

*
**

*
*

* *
*
*

*

*
*

**
***

**
*
** ****

*

*

**
*
*

**
*
****
***
******

*

*

*
*
*
*
*
*

*

**

*

*

*

0.0 0.2 0.4 0.6 0.8 1.0

−
5

0
5

10
15

20
25

U

y

Link Function
Estimate

(b) Normal

Figure 2. Estimates of the link function the assumption of (a) Student’s t and (b) Normal errors. Dotted lines refer
to 95% confidence bands based on the posterior distribution and estimated from the MCMC simulated values.

these are the estimates of the transformed link function G. It is evident that the proposed
method offers the possibility of considerably more robust estimates which can be used in
the presence of extreme values.

Regarding the index vector, we notice that its posterior mean, β̂ =
(0.731; 0.458; 0.360; 0.356)′ is quite close to the actual value. Figures 3 and 4 show
how well they fit the real parameter and how they are distributed a posteriori. They also
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Figure 3. 3(a): Histogram based on the posterior distribution of ‖β − β0‖, where ‖β0‖ are the real index vector.
3(b) Boxplot based on the posterior distribution of β.

indicate that the generated Markov chain for the index vector converges quickly to its
stationary distribution. It is shown that the estimated design points, Xβ̂, fits well the
initially proposed design, i.e, Xβ. The dashed line in 4(b) is simply the diagonal line
y = x. Finally, the simulations of the smoothing parameter (1/τ) and scale parameter
(δ) can be seen in Figure 5. The posterior means (± std. dev.) are 0.1184 ± 0.0056 and
1.031± 0.036, respectively.

The point in using heavy-tailed distributions is that they respond well to the presence of
extreme or influential values. For example, Castro et al. (2014) consider the use of splines
and Scale Mixtures of Normals to analyze censored partially linear models and show how
to perform case-deletion influence diagnostics in the presence of heavy tailed distributed
errors. In our case, the suggested method also allows us to take advantage of considering
heavy tailed distributions to the model error component by using the sampled values
of the weights σt to identify extreme and influential points. For the sake of illustration,
Figure 6(a) shows the graphs of the actual target function versus the estimated function.
In addition to them, we also see the values of the response variable in terms of Xβ over
the cited curves. On the other hand, Figure 6(b) shows the weights σt also in terms of
Xβ. It is interesting to note that they capture the outliers located to the left of the value



Chilean Journal of Statistics 13

0 2000 4000 6000 8000 10000
−

0.
4

0.
0

0.
4

0.
8

Iteration

β

β1
β2
β3
β4

(a) β samplings

*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

**

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

**

*

*

*

*
*

**

*

*

**

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

−3 −2 −1 0 1 2 3

−
3

−
1

0
1

2
3

Xβ0

X
β

(b) Xβ vs. Xβ̂ scatterplot

Figure 4. 4(a): Convergence of the Index Vector simulated components. 4(b): Estimated transformed design points,

Xβ (horizontal axis), vs. the actual transformed design points, Xβ̂ (vertical axis). The solid line is just least squares
linear fit (with intercept 0.01 and slope 0.97).
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Figure 5. 5(a): MCMC simulated values for 1/τ . 5(b): MCMC simulated values for δ.
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Figure 6. Comparison between the (real) target function and its estimate and the corresponding weights of each
observation obtained from the latent variables σt.

x′β = 0. The values at the right end of the chart also tend to receive a lower weighting,
and this is due to the rapid growth of the target function in this region of the graph.

Finally, we adjust the data assuming that the errors follow Student’s t distribution, but
without setting the degrees of freedom ν in advance. The prior distribution corresponding
to ν as well the associated hierarchical structure is as described in Section 5.1. In Figure 7,
we can see the samplings of ν drawn from its posterior distribution, as well as its histogram,
and the results are consistent with the previous one. Moreover, from the posterior samplings
we get the 95% credible interval (2.01; 2.43) and a point estimate, the posterior mean, equal
to 2.11. To conclude, by way of comparison, we also report the posterior mean of β as
being equal to (0.703; 0.275; 0.516; 0.405)′, which remains very close to the real value.
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Figure 7. Samplings and histogram associated to posterior distribution of Student’s t degrees of freedom (ν) obtained
through the proposed MCMC algorithm.

6.2 An Application

As an illustration, we apply the proposed model to a real data set with 111 daily measure-
ments (from May to September, 1973) exploring the relationship between environmental
variables: concentration of the air pollutant ozone (output variable) and three meteo-
rological indicators: solar radiation, windspeed and daily maximum temperature (input
variables). These observations were taken in New York and measured in parts per billion,
Langleys, miles/hour and degrees Fahrenheit, respectively. This data set is available in the
R package ElemStatLearn.

For comparison, this same data set was already studied by using the single-index model,
see Park et al. (2005) and Yu et al. (2002). In the first one, the link function was approxi-
mated by using wavelets and the model error was assumed to follow a Normal distribution.
This assumption makes the link function estimate to be less smooth than ours, since it is
more sensitive to extreme values. Besides that, in Yu et al. (2002), five different models
were compared, including a linear model and some multivariate semiparametric models,
and the results indicate that the single-index and additive models are the best suited to fit
the data. In particular, in favor of using heavy-tailed distributions (and many of which can
be represented as scale mixtures of Normals), the QQ-plots in Figure 8, constructed us-
ing the standardized variables derived from Ozone (output) and Temperature, Radiation
and Wind (inputs) indicate a deviation from the Standard Normal distribution toward
more leptokurtic distributions — as pointed out by the considerable spacing between the
QQ-plot dots and the dashed line. Looking only at the output variable alone, Figure 9
also indicates a heavy-tailed behavior, as one can see through the QQ-plot of the empirical
distribution of the standardized variable against the Normal distribution, or the histogram
of the excess kurtosis calculated using a Bootstrap sample of size 5000, whose estimate is
1.13 with a 95% confidence interval given by (−0.56; 3.16). Finally, it should be said that
this phenomenon is further reinforced by the scatter plot of the output (Ozone) in relation
to the transformed variables as indicated in Figure 10, as well as the boxplots in Figure
11 in the sense that estimates are much more volatile when using the Normal distribution
as the error distribution.

In analyzing data we considered four different distributions: the Student’s t (for some
different degrees of freedom), the Double Exponential1 with parameters µ = 0 and b = 1,
the Standard Slash and the Normal distributions. For comparison, we display in Table 5
the respective deviations and average deviations.

Tables 5 and 6 also suggest that it is not necessary to use large values of M to get a good

1The Double Exponential distribution on the real line is defined by the pdf p(x) = exp(−|x − µ|/b)/(2b), where
µ ∈ (−∞,∞) represents the location parameter (which coincides with its mean and median) and b > 0 is the scale
parameter (with 2b2 corresponding to the variance of the distribution).
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(a) Std. ozone vs. temperature QQ plot.
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(b) Std. ozone vs. radiation QQ plot.
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(c) Std. ozone vs. wind QQ plot.

Figure 8. Quantile-quantile plots of the standardized ozone level empirical distribution against the standardized
inputs (temperature, ozone level and wind).
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Figure 9. Quantile-quantile plots of the (standardized) ozone level empirical distribution against the Normal and
the histogram of the excess kurtosis obatained via Bootstrap resampling.

Table 5. Deviations and Average Deviations for different models and different values of M .

M=15 M=20 M=25
Distribution Dev Avg Dev Dev Avg Dev Dev Avg Dev

Normal 3,114.31 1,106.91 2,262.02 1,117.36 3,266.56 1,113.99
Student-t (ν = 2.5) 2,127.94 1,531.03 2,141.52 1,489.19 2,105.18 1,557.55
Student-t (ν = 3) 2,296.94 1,578.15 2,248.63 1,578.82 2.339,48 1,478.31
Student-t (ν = 4) 3,617.11 1,869.02 2,647.86 1,630.34 2,805.28 1,724.12
Student-t (ν = 5) 2,826.25 1,766.45 2,853.77 1,741.00 2,891.60 1,772.92
Student-t (ν = 6) 3,002.71 1,872.66 3,089.53 1,796.27 3,092,92 1,817.01
Student-t (ν = 8) 3,433.11 1,952.14 3,382.14 1,931.50 3,418.19 1,873.77

Double Exponential 1,358.37 2,038.61 1,735.26 1,749.11 1,746.60 1,734.53
Slash 2,091.76 1,262.74 2,258.88 1,201.14 2,152.54 1,158.87

fit and so we decided for M = 20. Besides, the numbers in the same table suggest that
models allowing for fat tailed distributed errors fit better the link function to the data.
Another clue is the fact that when the degrees of freedom associated to the Student’s t
distribution are not fixed a priori, the model tends to choose values close to 2. In particular,
the Student’s t and the Double Exponential distributions seem to be the best options. In
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Table 6. Continuation of Table 5.

M=30 M=35
Distribution Dev Avg Dev Dev Avg Dev

Normal 6,725.41 1,116.87 11,682.11 1,118,14
Student-t (ν = 2.5) 2,180.45 1,421.04 2,199.60 1,537.28
Student-t (ν = 3) 2,317.68 1,494.56 2,231.08 1,740.25
Student-t (ν = 4) 2,643.65 1,616.86 2,658.32 1,618.49
Student-t (ν = 5) 2,821.61 1,760.72 2,949.00 1,665.47
Student-t (ν = 6) 3,154.35 1,839.22 3,029.63 2,152.32
Student-t (ν = 8) 3,426.39 1,847.13 3,482.59 2,300.99

Double Exponential 1,758.17 1,724.57 1,798.52 1,788.86
Slash 2,186.47 1,156.20 2,136.92 1,227.98

Figure 10, we compare the estimates of the link function Double Exponential, Student’s t
(with ν = 2.5), Slash and Normal cases. The correspondent index vector estimates can be
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(b) Student’s t (ν = 2.5)
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Figure 10. 10(a): Link function estimate and its 95% confidence region under the assumption of Double Exponential
distributed errors. 10(b), 10(c) and 10(d): The same for the Student’s t distribution (ν = 2.5), Slash and Normal
distributions, respectively.

found in Table 7 and we can make at least three observations. First, we notice that the
confidence bands for the Student’s t and Double Exponential distributions are narrower,
especially in the extremes as expected, since such distributions, because they have heavier
tails than the Normal distribution, better accommodate extreme values and outliers. In
fact, to accommodate extreme values under the assumption of a Normal distribution,
the scale parameter has to be considerably larger than its counterparts associated with
the more robust distributions (Student’s, Double Exponential and Slash, for example) In
broader confidence bands. Similar phenomenon occurs with the estimates of the parameters
corresponding to the linear component of the model as discussed below. Secondly, the
Gaussian model implies considerable higher levels of ozone in the atmosphere for lower
values of Xβ̂, which is not ratified when we the noise follows a distribution with heavier
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tails. Moreover, it is clear that the Normal model is significantly more sensitive to extreme
values which causes the link function to be more linear and, therefore, making the ozone
concentration to increase at the same rate for any combination of climatic inputs. Finally,
comparing how spread are the transformed values of Xβ̂, as can seen in Figure 10, it is
evident that the influence of input variables is not the same under the assumptions of
normality and heavy tails.

Table 7. Posterior means and standard deviations of the climatic variables (Radiation, Temperature and Wind)

and model parameters (Scale and Smoothing parameters).

Coefficients
Noise Radiation Temperature Wind Scale Parameter Smoothing Parameter

Normal 0.02 (0.10) 0.36 (0.24) -0.93 (0,18) 8.11 (1.22) 0.0984 (0.0079)
Student’s 0.026 (0.025) 0.81 (0.12) -0.58 (0.15) 1.161 (0.034) 0.0992 (0.0053)

Slash 0.048 (0.050) 0.84 (0.16) -0.54 (0.31) 1.057 (0.028) 0.1025 (0.0059)
Double Exponential 0.051 (0.054) 0.70 (0.11) -0.710 (0.098) 2.09 (0.17) 0.0979 (0.0058)

In Figure 11, one can see the boxplots corresponding to the estimates in Table 7. Again,
it is clear that there are consequences in choosing a distribution with heavier tails or not.
The Normal model tends to give somewhat less importance to Radiation and significantly
less importance to Temperature when compared to the other models. On the hand, it
emphasizes the weight of wind in the ozone concentration. In the Normal model, the index
vector posterior distribution is clearly fat tailed, which makes its estimates have larger
standard deviations.
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(b) Student’s t (ν = 2.5)
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Figure 11. 5(a): Boxplot for the sampled values of β̂ under the Gaussian assumption. Right pane: the same under
the Double Exponential assumption.
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7. Extensions

Some possible improvements in the proposed models that will the subject of future works
are: (a) estimation of curves with varying degree of smoothness and (b) model selection.
In fact, we considered here only functions with a global amount of smoothing. This could
be a drawback if the curvature of the target function varies strongly with the inputs. In
Sheipl et al. (2009), this problem is dealt with by introducing a locally adaptive spline
smoothing by using scale mixtures of Normals with locally varying exponential-gamma
distributed variances for the differences of the P-spline. Introduction of such approach in
our model would imply at least an extra level in the priors hierarchy and more complexity
in the MCMC scheme. Regarding model selection, the open issue here is the selection of
the parameter λa. As indicated in Section 3 and the references therein, there are ways of
doing so using generic means available in the literature. However, it would be interest-
ing to establish a specialized and fully Bayesian method for choosing the parameter λa
(associated with the penalization matrix K). This is a topic that we are still exploring
and which we intend to present in a future work. Another question of interest for us is to
determine automated ways to select the mixture distribution h. As far as we know, there
is no satisfactory way of doing that and inference must be done by testing the different
possibilities individually and comparing them afterwards.

8. Conclusions

In this paper, we presented a Bayesian framework for estimation and inference of the
parameters of interest, i.e. the parameters that make up the model (1). We presented
here the formulas needed to implement each step of the MCMC algorithm used to sample
the parameters according to their posterior distributions and the conditions under which
the posterior distribution is proper. We emphasized the use of Student’s t distribution,
but we also showed how one could adapt the model to different choices of distributions
for the noise. The computation, although computationally intensive, is straightforward to
implement and has the advantage, when compared to Antoniadis et al. (2004), to associate
a non informative prior to the index vector, besides being a completely Bayesian approach
(with no regualarization).

The efficiency of the proposed methodology is confirmed through simulation study and
application to real data. Concerning the application, the above methodology suggests that
models based on normal distribution are inappropriate. Finally, we noticed that applica-
tions of such approach to more general models, such as models with varying degrees of
smoothness and even multi-index models and model selection were left for future works.

Appendix A. On the Distribution of Uβ

We have included the subsequent argument just for convenience, for it follows essentially
the same steps as described in Wang et al. (2009). It should be noted, however, that we
are now applying them to a more relaxed set of hypotheses. That is, we do not require
that the support of the pdf of Xt coincide with the closed ball Ba.

Let Xβ = β′X and pβ be the pdf of Uβ. It follows then that pβ(u) =
[
F ′p(v)

]−1
pXβ

(v),

where v = F−1
p (u) (0 ≤ u ≤ 1). Define Dv = {x ∈ Rp|v ≤ xβ ≤ v + ∆v} ∩ Ba, so that



Chilean Journal of Statistics 19

P (v ≤ Xβ ≤ v + ∆v) = P (X ∈ Dv) =
∫
Dv
pX(x)dx. From Assumption 2,

κ`Vp(Dv)

V (Ba)
≤ P (v ≤ Xβ ≤ v + ∆v) ≤ κuVp(Dv)

V (Ba)
,

where Vp(Dv) and Vp(Ba) are the p-dimensional volumes of Dv and Ba, respectively. On
the other hand, Vp(Dv) = Vp−1(Iv)∆v + o(∆v), where Iv = {x ∈ Rp|xβ = v} ∩ Ba. Now,
using the facts that

Vp(Iv) =
π(p−1)/2(a2 − v2)(p−1)/2

Γ((p+ 1)/2)
and Vp(Ba) =

πp/2ap

Γ(p/2 + 1)
,

and the identity Γ(z)Γ(z + 1/2) = 21−2zπ1/2Γ(2z), we have Vp(Dv)/Vp(Ba) = F ′p(v)∆v +

o(∆v). Hence, κ`
(
F ′p(v)∆v + o(∆v)

)
≤ P (v ≤ Xβ ≤ v+ ∆v) ≤ κu

(
F ′p(v)∆v + o(∆v)

)
, so

that dividing the all termos in the above inequalities by ∆v and doing ∆v → 0, we get
κ` ≤ F ′p(v)−1pXβ

(v) = pβ(u) ≤ κu.

Appendix B. Full Conditionals

In the following, we will not make explicit, for simplicity, the dependence of the full con-
ditional distributions on the specific parameters and hyperparameters associated to the
scale factor, namely ζ.

• B-splines coefficients: writing ∆ ≡
(

1
δ2B(β)′W−1B(β) + 1

τ2Kd

)−1
, it is clear that

p(y|θ)p(a|τ2) ∝ exp

{
− 1

2δ2
(y −B(β)a)′W−1(y −B(β)a)

}
· exp

{
− 1

2τ2
a′Kda

}
∝ exp

{
−1

2

(
(a−m)′∆−1(a−m)

)}
,

where m ≡ 1
δ2 ∆B(x;β)′W−1y. Now,

p(a|y,x,σ;β, δ2, τ2) ∝ p(y|x,σ;a,β, δ2)p(a|τ2)

∝ exp

{
−1

2

(
(a−m)′∆−1(a−m)

)}
,

so that a|y,uβ,σ;β, δ2, τ2 ∼ Np (m; ∆).

• Scale parameter: let r(β,a) ≡ y−B(β)a as the vector of residuals given the param-
eters β and a, so

p(δ2|y,uβ,σ;a,β, τ2) ∝ p(y|uβ,σ;a,β, δ2)p(δ2|α0, γ0)

∝
(

1

δ2

)(2+α0+T/2)−1

exp

{
− 1

δ2

(
γ0 +

1

2
r(β,a)′W−1r(β,a)

)}
,

so that

δ2|y,uβ,σ;a,β, τ ∼ IG

(
2 + α0 +

T

2
, γ0 +

1

2
r(β,a)′W−1r(β,a)

)
.
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• Smoothing parameter: analogously,

p(τ2|y,uβ,σ;a,β, δ2) ∝ p(a|τ2)p(τ2|α1, γ1) =

(
1

τ2

)(2+α1+M

2
)−1

exp

{
− 1

τ2

(
γ1 +

a′Ka

2

)}
,

so that

τ2|y,uβ,σ;a,β, δ2 ∼ IG

(
2 + α1 +

M

2
, γ1 +

a′Ka

2

)
.

• Latent variable: Starting with the Contaminated Normal distribution, we get
σt|yt,uβ;a,β, δ2, τ2 = 1 with probability 1−ξ′, or equal to λ2 with probability ξ′, where
ξ′ = Ctξλ exp{−rt(β;a)2λ/(2δ2)} and Ct is a normalizing constant which depends on
the observation (yt;x

′
t)
′. For the Student’s t distribution, we have

p(σt|yt,uβ;a,β, δ2, τ2) ∝ σ
ν+1

2
−1

t exp

{
−ν + rt(β;a)2/δ2

2
σt

}
,

so that

σt|yt,uβ;a,β, δ2, τ2 ∼ Gamma

(
ν + 1

2
,
ν + rt(β;a)2/δ2

2

)
. (B1)

It follows immediately from (B1) that, if εt ∼ Cauchy, the weights σt are exponentially
distributed. For the Modulated Normal type II family, for which σ|ζ ∼ Beta(ν/2, 1),
with ν > 0, we have

p(σt|yt,uβ;a,β, δ2, τ2) ∝ σ(ν+1)/2−1
t exp

{
−rt(β;a)2

2δ2
σt

}
1I(0,1)(σt).

Although this is similar to the gamma p.d.f., the values of σt are constrained to be in
the interval (0, 1). Hence the simulation is not so straight and we need to use some
algorithm like the accept-reject one. However, if ν = 1, we get the Standard Slash
distribution (whose pdf is given by p(x) = (φ(0) − φ(x))/x2, if x 6= 0, and p(x) =
φ(0)/2, if x = 0, where φ(x) is the just Standard Normal pdf), for which the full
posterior conditional is simplified to σt|yt,uβ;a,β, δ2, τ2 ∼ TEXP

(
rt(β;a)2/(2δ2), 1

)
,

i.e. the Truncated Exponential distribution1 on the interval (0, 1). In the case of the
Generalized Hyperbolic distribution, for which the mixing density is such that p(σ|ζ) ∝
σ−2 exp{−0.5(ν1/σ + ν2σ)} (here ζ′ = (ν1, ν2), with ν1 > 0 and ν2 ≥ 0), we have

p(σt|yt,uβ;a,β, δ2, τ2, ζ) ∝ σ(−1/2−1)
t exp

{
−1

2

[(
rt(β;a)2

δ2
+ ν2

)
σt +

ν1

2σ

]}
,

so that

σt|yt,uβ;a,β, δ2, τ2, ζ ∼ GIG

(
rt(β;a)2

δ2
+ ν2, ν1,−

1

2

)
,

1The Truncated Exponential distribution with parameter λ on the interval (0, a) is characterized by the pdf p(x|λ) =
λ exp{−λx}/(1− exp{−λa}).
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where GIG stands for Generalized Inverse Gaussian distribution2. In particular, if ν1 = 1
and ν2 = 0, we get the Laplace distribution with scale parameter 1. For a more complete
list of mixing distributions, we refer the reader to Fernandez et al. (2000)

• Linear Component Parameters: The posterior full conditional distribution for the
linear component parameter β,

p(β|y,uβ,σ;a, δ2, τ2) ∝ exp

{
− 1

2δ2
r(β,a)′W−1r(β,a)

}
1I(β′β = 1), (B2)

does not match up with any standard distribution, so we sample from (B2) via a
Metropolis-Hastings (MH) step by using a von Mises-Fisher distribution, with mean
direction β0 and concentration parameter κ > 0, as proposal. Hence, given β0,

p(β∗|β0, κ) =
κp/2−1

(2π)p/2Ip/2−1(κ)
exp{κβ′0β∗},

where Ip/2−1 is the Bessel function of first kind1, and so we take β = β0, with probability
1− ρ(β0,β

∗), or β = β∗, with probability ρ(β0,β
∗), where

ρ(β0,β∗) = min

{
p(β∗|y,uβ,σ;a, δ2, τ2)p(β0|β∗, κ)

p(β0|y,uβ,σ;a, δ2, τ2)p(β∗|β0, κ)
, 1

}
= min

{
exp

{
− 1

2δ2
(r∗ − r0)′W−1(r∗ + r0)

}
exp{κβ′prior(β∗ − β0)}, 1

}
,

is the acceptance probability, r∗ ≡ r(β∗,a) and r0 ≡ r(β0,a). We have used the identity
p(β∗|β0, κ) = p(β0|β∗, κ).

Appendix C. Student’s t Degrees of Freedom

In order to get the full posterior conditional distribution associated to the exponential prior
for ν (ζ = ν), recall that ν ≥ ν0 and ν − ν0 ∼ Exponencial(λ), with λ ∼ Uniform(λ`, λu).
Hence,

p(ν|y,uβ,σ;a,β, δ2, τ2, λ) ∝ p(σ|ν)p(ν|λ, ν0)

=

[
T∏
t=1

σ
ν

2
−1

t

(
ν
2

) ν
2

Γ
(
ν
2

) exp
{
−ν

2
σt

}]
exp{−λ(ν − ν0)}

∝
(
ν
2

)Tν
2

Γ
(
ν
2

)T exp

{
−ν

(
1

2

T∑
t=1

(σt − log σt) + λ

)}
1I(ν > ν0),

and p(λ|y,uβ,σ;a,β, δ2, τ2, ν) ∝ p(ν|λ, ν0)1I(λ` < λ < λu) = λ exp {−λ(ν − ν0)} 1I(λ` <
λ < λu), which is just a Truncated Gamma distribution. On the other hand, we suggest
to sample ν by introducing a Metropolis-Hastings step and for such we take ν∗ > ν0 such
that ν∗ − ν0 ∼ LN(log(νpr − ν0), δ2

ν) , i.e. the Lognormal distribution , as a proposal (see

2The Generalized Inverse Gaussian distribution, GIG(a, b, p), with parameters a > 0, b > 0 and p ∈ (−∞,∞) on
the interval (0,∞) is characterized by the pdf p(x|a, b, p) ∝ xp−1 exp{−(ax+ b/x)/2}.
1The Bessel function of first kind and order α is given by Iα(κ) =

∑∞
j=0 [j!Γ(j + α+ 1)]−1 (κ/2)2j+α .
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Cabral et al. (2012)), where νpr is just the last sampled value of ν. Therefore, using the
fact that

p(νpr| log ν∗, δ
2
ν)

p(ν∗| log νpr, δ2
ν)

=
ν∗ − ν0

νpr − ν0
,

we get the acceptance probability

ρ(νpr, ν∗) = min

{[
Γ
(νpr

2

) (
ν∗
2

) ν∗
2

Γ
(
ν∗
2

) (νpr
2

) νpr
2

]T
× exp

{
−

(
1

2

T∑
t=1

(σt − log σt) + λ

)
(ν∗ − νpr)

}
×

× (ν∗ − ν0)

(νpr − ν0)
, 1

}
.
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Antoniadis, A., Grégoire G., McKeague, W., (2004). Bayesian estimation in single-index
models. Statistica Sinica 14, 1147-1164.

de Boor, C., (2001). A Practical Guide to Splines (2nd Ed.). Springer-Verlag, New York.
Bandyopadhyay, D., Castro, L.M., Lachos, V.H., Pinheiro, H.P., (2015). Robust joint non-

linear mixed-effects models and diagnostics for censored HIV viral loads with CD4 mea-
surement error. Journal of Agricultural, Biological, and Environmental Statistics 20,
121-139.

Cabral, C. R. B., Lachos, V.H., Madruga, M.R., (2012). Bayesian analysis of skew-normal
independent linear mixed models with heterogeneity in the random-effects population.
Journal of Statistical Planning and Inference 142, 181-200.

Castro, L.M., Lachos, V.H., Ferreira, G.P., Arellano-Valle, R.B., (2014). Partially linear
censored regression models using heavy-tailed distributions: A Bayesian approach. Sta-
tistical Methodology 18, 14-31.

Eilers, P., Marx, B.D., (1996). Flexible smoothing with B-splines and penalties. Statistical
Science 11, 89-121.

Fang, K., Kotz, S., Ng, K.W., (1989). Symmetric Multivariate and Related Distributions.
Chapman and Hall CRC, London.

Fernandez, C., Steel, M.F., (2000). Bayesian regression analysis with scale mixtures of
normal. Econometric Theory 16, 80-101.

Fonseca, T.C.O., Ferreira, M.A.R., Migon, H.S., (2008). Objective bayesian analysis for
the Student-t regression model. Biometrika 95, 325-333.

Geisser, S., Eddy, W.F., (1979). A predictive approach to model selection. Journal of the
American Statistical Association 74, 153-160.

Geweke, J., (1993). Bayesian treatment of the Student’s t linear model. Journal of Applied
Econometrics 8, S19-S40.

Hastie, T., Tibshirani, R., Friedman, J.H. (2001). The Elements of Statistical Learning:
Data Mining, Inference and Prediction. Springer, New York.

Lang, S., Brezger, A. (2004). Bayesian P-splines. Journal of Computational and Graphical
Statistics 13, 183-212.

Müller, P., (1993). Alternatives to the Gibbs sampling scheme. Technical Report, Institute
of Statistics and Decision Sciences, Duke University.



Chilean Journal of Statistics 23

Park, C.G., Vannucci, M., Hart, J.D., (2005). Bayesian methods for wavelet series in single-
index models. Journal of Computational and Graphical Statistics 14, 1-25.

Park, T., Casella, G., (2008). The Bayesian Lasso. Journal of the American Statistical
Association 103, 681-686.

Sheipl, F., Kneib, T., (2009). Locally adaptive Bayesian P-splines with a Normal-
Exponential-Gamma prior. Computational Statistics and Data Analysis 53, 3533-3552.

Vehtari, A., Gelman, A., Gabry, J., (2017). Practical Bayesian model evaluation using
leave-one-out cross validation and WAIC. Statistics and Computing 27, 1413-1432.

Wang, L., Yang, L., (2009). Spline estimation of single-index models. Statistica Sinica 19,
765-783.

Yu, Y., Ruppert, D., (2002). Penalized spline estimation for partially linear single-index
models. Journal of American Statistical Association 97, 1042-1054.


