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Abstract

In this paper we study the performance of the Metropolis-Hastings and Slice sampling
algorithms for estimating the Weibull distribution parameters. The Metropolis-Hastings
algorithm is developed considering its two main version namely independent Metropolis-
Hastings and random walk Metropolis. A numerical simulation study is carried out to
understand performance of the three methods and compare their performances with
maximum likelihood estimation. The comparison among methods is made in terms of
sample root mean square errors and bias. We find that the Random walk Metropolis and
Slice sampling present a complementary behaviour and outperforms the Independent
Metropolis-Hastings and Maximum Likelihood estimation, specially, for datasets with
censored times. The methods are also illustrated on three real datasets.

Keywords: Weibull distribution · Bayesian inference · Metropolis-Hastings · Slice
sampling.
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1. Introduction

Since its introduction in 1951 by professor Wallodi Weibull (Weibull, 1951), the Weibull
distribution has been successfully used to model a very extensive variety to complex mech-
anisms, such that, reliability engineering (Mann et al., 1974; Johson et al., 1994), lifetime
data (Lawless, 1974; Kleinbaum and Klein, 2012; Collet, 2003), among others. It is main
due its versatility, in which, depending on the parameters values an increasing, constant
or decreasing hazard rate can be modelled. For more details, please see the books of Rinne
(2008) and McColl (1998).

In the literature there exist several versions of the Weibull distribution, since with two or
three parameters as well as modifications such as Inverse Weibull distribution, Truncated
Weibull distribution, mixed Weibull distributions, compound Weibull distributions and
extended Weibull distributions with four and five parameters (Rinne, 2008). This paper
focuses on the two-parameter version.

Due its broad applicability, methods to estimate Weibull model parameters precisely and
efficiently are very important. The two most used estimation methods are the method of
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maximum likelihood (ML) and method of moments (MM). But, there are various different
estimation methods in the literature for estimating the parameters of the Weibull distri-
bution. Among them, last square method and weighted least square method (Poboč́ıková
and Sedliacková, 2014; Nwobi and Ugomma, 2014), L-moments method (Hosking, 1990),
probability weighted moment estimator (Bartoluccia et al., 1999), percentile estimators
(Dubey, 1967) and methods based on modification of MM and ML (Cohen, 1982; McColl,
1998; Ahmad, 1994). But, especially due to their good properties and for being easy to be
calculated, ML remains the most popular estimation method for estimating the Weibull
distribution parameters.

In this paper, we develop a Bayesian approach to estimate the Weibull distribution pa-
rameters under random right-censored data. The two unknown parameters of Weibull dis-
tribution are denoted by α and β. The estimation procedure is carried out via Markov chain
Monte Carlo (MCMC). The scale parameter β is updated via Gibbs sampling. To update
shape parameter α we consider the Metropolis-Hastings algorithm (Chib and Greenberg,
1995) in its two main versions: Independent Metropolis-Hastings (IMH) and Random Walk
Metropolis (RWM). But, as in some cases, creating a good candidate generating-density
in MH may be difficult, so we also describe as to update shape parameter α via Slice
sampling (Neal, 2003).

The main objective of this paper is to perform a comparison among ML, IMH, RWM and
Slice sampling (SS) methods in the estimation of Weibull distribution parameters. For this,
a numerical simulation study was carried out to investigate behavior of each estimation
method considering different sample sizes and percentages of censuring. Based on sample
root mean square errors (RMSE) and bias, we determine which method provides superior
estimates of the parameters. Besides, we compare the performance of the Bayesian compu-
tational methods (IMH, RWM and SS) using the Effective sample size and the Integrated
autocorrelation time. Results obtained shows that SS can be an effective alternative to
standard MCMC methods to get samples from posterior distributions of parameters of the
Weibull distribution. We also apply the four methods to three available real data sets.

The remainder of the paper is organized as follows. In Section 2, we introduce the
Weibull model and the estimation method via Maximum Likelihood function. In Section
3, we develop the Bayesian approach and present the resampling procedures via Indepen-
dent Metropolis-Hastings, Random Walk Metropolis and Slice sampling. In Section 4, a
simulation study is provided. In Section 5, we apply the methods on three real datasets.
Finally, in Section 6 we summarize our findings.

2. The Two-parameters Weibull Model and Observed Data

Let T1, . . . , Tn are independent and identically distributed Weibull random variables, i.e.,

T1, . . . , Tn
iid∼ W (α, β), (1)

with shape parameter α and scale parameter β−1/α, each one having probability density
function

f(ti|α, β) = βαtα−1
i exp{−βtαi },

for ti > 0, α > 0, β > 0 and i = 1, . . . , n.
The survival function S(ti|α, β) and hazard function h(ti|α, β) are given by

S(ti|α, β) = exp {−βtαi } and h(ti|α, β) = βαtα−1
i ,

respectively, for i = 1, . . . , n.
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If parameter α is less than 1 the hazard function is decreasing with t. Whereas if α is
greater than 1 the hazard function is increasing with t; and if α = 1, the hazard function is
constant. For this last case, the Weibull distribution becomes the Exponential distribution
with parameter β.

We shall now assume that we observe possibly right censored data for n individuals.
Thus, let y = (y1, . . . , yn) be the observed dataset, where yi = (ti, δi), ti is an observed
time point and δi is a indicator function given by

δi =

{
1, if the lifetime is uncensored, i.e., Ti = ti;
0, if the lifetime is censored, i.e., Ti > ti

for i = 1, . . . , n.
Given y, the likelihood function for (α, β) takes the form

L(α, β|y) =

n∏
i=1

[f(ti|α, β)]δi [S(ti|α, β)]1−δi = βrαrexp

{
α

n∑
i=1

δilog(ti)− β
n∑
i=1

tαi

}
(2)

where r =
n∑
i=1
δi is the amount of uncensored data. A demonstration of the equation (2) is

given by Lawless (1974), p.53.

2.1 Maximum Likelihood Estimation

The method of maximum likelihood estimation is a commonly used procedure for estimat-
ing parameters. The maximum likelihood estimates (MLE) α̂ and β̂ of the parameters α
and β maximize function (2) or, equivalently, the logarithm likelihood function

l(α, β|y) = rlog(β) + rlog(α) + α

n∑
i=1

δilog(ti)− β
n∑
i=1

tαi . (3)

Differentiating (3) with respect to α and β, respectively, yields

∂l(α, β|y)

∂α
=
r

α
+

n∑
i=1

δilog(ti)− β
n∑
i=1

tαi log(ti), (4)

∂l(α, β|y)

∂β
=
r

β
−

n∑
i=1

tαi . (5)

Equalling (4) and (5) to zero, the MLE (α̂, β̂) of (α, β) are solutions of the following
equations

β̂ =
r
n∑
i=1
tα̂i

and
r

α̂
− β̂

n∑
i=1

tα̂i log(ti) =

n∑
i=1

δilog(ti). (6)

Equations in (6) do not have explicit solutions. Therefore, we apply numerical methods to
solve these equations. Iterative solutions of these equations are the MLE of the parameters
α and β. We obtain the MLE using the statistical R software (R Core Team, 2017) and
the optim command.
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3. Bayesian Inference

In order to develop the Bayesian approach we need to specify the prior distributions for
α and β. Firstly, we assume that priors are independent, i.e., π(α, β) = π(α)π(β). So, we
consider the following prior distributions

α|a1, a2 ∼ Γ(a1, a2) and β|b1, b2 ∼ Γ(b1, b2)

where Γ(·) represents the Gamma distribution and a1, a2, b1 and b2 are known hyperpa-
rameters all of them with support on (0,+∞). The choice of the hyperparameters values
will generally depend upon the application at hand. At this moment, we leave them un-
specified.

Using the Bayes theorem, the joint posterior distribution for (α, β) upon which inference
is based, is given by

π(α, β|y) ∝ L(α, β|y)π(α)π(β),

where L(α, β|y) is given in (2).
The conditional posterior distributions are

β|y, α ∼ Γ

(
b1 + r, b2 +

n∑
i=1

tαi

)
(7)

and

α|y, β ∝ αa1+r−1 exp

{
−α

[
a2 −

n∑
i=1

δilog(ti)

]
− β

n∑
i=1

tαi

}
. (8)

Note from (7), that the resampling procedure for β is given in a straightforward way via
Gibbs sampling algorithm.

Gibbs sampling algorithm: Let the current state of the Markov chain consist of(
α(l−1), β(l−1)

)
, where l is the l-th iteration of the algorithm, for l = 1, . . . , L. So, generate

β(l) ∼ Γ

(
b1 + r, b2 +

n∑
i=1
tα

(l−1)

i

)
, where α(l−1) is the value of α in (l− 1)-th iteration, in

which, α(0) is the initial value of α.

However, the conditional posterior distribution for α does not follow any closed distri-
bution and its resampling procedure is not given in a straightforward way. For this case,
the usual Bayesian procedure is to use the Metropolis-Hastings (MH) algorithm.

3.1 Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm together with the Gibbs sampling are the two most
popular example of a Markov chain Monte Carlo (MCMC) method. This algorithm is used
for sampling from some generic distribution that we do not know how to generate a random
sample. Similar to acceptance-rejection sampling, the MH algorithm consider that, to each
iteration of the algorithm, a candidate value can be generated from a proposal distributions.
So, the candidate value is accepted according to an adequate acceptance probability. This
procedure guarantees the convergence of the Markov chain for the target density. For more
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details on MH algorithm see Hastings (1970), Chib and Greenberg (1995), Gelman et al.
(1995) and Gilks et al. (1996).

In order to update parameter α via MH algorithm, consider (α, β) be the current state of
the Markov chain. Let α∗ to be a candidate value generated from a candidate generating-
density q[α∗|α]. So, the value α∗ is accepted with probability Ψ(α∗|α) = min(1, Aα), where

Aα =
L(α∗, β|y)π(α∗)

L(α, β|y)π(α)

q[α|α∗]

q[α∗|α]
(9)

and L(·|y) is the likelihood function, given in equation (2).

In practical terms, the MH algorithm is implemented as follows.

Metropolis-Hastings algorithm: Let the current state of the Markov chain consist of(
α(l−1), β(l)

)
, where l is the l-th iteration of the algorithm, for l = 1, . . . , L. So, update

α as follows:
(1) Generate α∗ ∼ q[α∗|α];
(2) Calculate Ψ(α∗|α) = min(1, Aα), where Aα is given in (9);
(3) Generate u ∼ U(0, 1). If u ≤ Ψ(α∗|α) accept α∗ and do α(l) = α∗. Otherwise, reject

α∗ and do α(l) = α(l−1).

3.1.1 Two common choices for q[·]

To implement the MH algorithm, it is necessary specify the candidate-generating density
q[α∗|α]. Usually q[·] is chosen such that it is easy to sample from it. In this section, we
describe the two common choice of q[·].

• Independent Metropolis-Hastings (IMH). If q[α∗|α] = q[α∗], i.e., the candidate
generating-density does not depend on the current α value, then we get a special case
of the original algorithm, in which, Aα simplifies to

Aα =
L(α∗, β|y)π(α∗)

L(α, β|y)π(α)

q[α]

q[α∗]
.

In order to implement this case, one may set q[α∗] as the prior distribution, i.e., q[α∗] =
π (α∗). So, Aα is given by the likelihood ratio

Aα =
L(α∗, β|y)

L(α, β|y)
. (10)

This algorithm is implemented as follows.

Independent Metropolis-Hastings algorithm: Let the current state of the Markov
chain consist of

(
α(l−1), β(l)

)
. For l-th iteration of the algorithm, l = 2, . . . , L:

(1) Generate α∗ ∼ Γ(a1, a2);
(2) Calculate Ψ(α∗|α) = min(1, Aα), where Aα is given in (10);
(3) Generate u ∼ U(0, 1). If u ≤ Ψ(α∗|α) accept α∗ and do α(l) = α∗. Otherwise, reject

α∗ and do α(l) = α(l−1).

Although the choice of the prior distributions as the candidate generating-density is
mathematically attractive, this may lead to many rejections of the proposed moves and
a slow convergence of the algorithm. This happen, specially, for cases in which no prior
information is available and prior distribution has large variance. An alternative is to
explore the neighbourhood of the current value of the chain in order to propose a new
value. This method is called by random walk Metropolis.
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• Random walk Metropolis (RWM). If the candidate generating-density q[α∗|α] is sym-
metric and the probability of generating a move from α to α∗ depends only on the
distance between them, i.e., q[α∗|α] = g(|α−α∗|), where g is a symmetric density, then
Aα simplifies to

Aα =
L(α∗, β|y)π(α∗)

L(α, β|y)π(α)
(11)

since the proposal kernels from numerator and denominator cancel.

In order to implement this case, we simulate α∗ setting α∗ = α+ ε, where ε is a random
perturbation generated from a Normal distribution with mean equals to 0 and variance
σ2
α, ε ∼ N (0, σ2

α), meaning that α∗ ∼ N (α, σ2
α). This algorithm is implemented as follows.

Random walk Metropolis algorithm: Let the current state of the Markov chain
consist of

(
α(l−1), β(l)

)
. For l-th iteration of the algorithm, l = 1, . . . , L:

(1) Generate ε ∼ N (0, σ2
α) and set α∗ = α(l−1) + ε;

(2) Calculate Ψ(α∗|α) = min(1, Aα), where Aα is given in (11);
(3) Generate u ∼ U(0, 1). If u ≤ Ψ(α∗|α) accept α∗ and do α(l) = α∗. Otherwise, reject

α∗ and do α(l) = α(l−1).

As discussed by Chib and Greenberg (1995) an important issue on RWM is how to fix
the value of σ2

α. This value has great influence on efficiency of the algorithm. If σ2
α is small,

then random perturbations will be small in magnitude and almost all will be accepted.
As a consequence, it will require a large number of iterations to explore the whole space-
state. On the other hand, if σ2

α is too large, then it will causes too many rejections of the
proposed moves and a considerably slowing down convergence. More details on these facts
can be found in Roberts et al. (1997); Bedard (2007); Mattingly et al. (2011).

Typically, one may fix the value of σ2
α testing some values in a few pilot runs and then

choosing a value in which acceptance ratio lies in between 20% and 30% (see, for example,
Gilks et al. (1996) and Gelman et al. (1995)). But, in the most of cases this makes the
method very tedious.

3.2 Slice sampling algorithm

An alternative to the MH for sampling from some generic distribution is the Slice sampling
algorithm, proposed by Neal (2003). This algorithm is a kind of Gibbs sampling based on
the simulation of specific Uniform random variables.

For this, an auxiliary variable U is introduced and the jointly distribution π(α,U |y, β)
is given by a Uniform distribution over region U = {(α, u) : 0 < u < h(α)} below the curve
on surface defined by h(α), where from (8)

h(α) = αa1+r−1 exp

{
−α

[
a2 −

n∑
i=1

δilog(ti)

]
− β

n∑
i=1

tαi

}
.

Since, marginalizing π(α, u|y, β) over u yields π(α|y, β), sampling from π(α, u|y, β) and
discarding u is equivalent to sampling from π(α|y, β).

As sampling from π(α,U |y, β) is not straightforward, we implement a Gibbs sampling
algorithm where in every iteration l, we first sample U (l) ∼ U

(
0, h(α(l−1))

)
and then

sample α(l) ∼ U(A), where A = {α : u(l) < h(α)}. However, as inverse of h(α) can not be
obtained analytically, we adapt the following procedure to update α:
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(i) let λ = 0.01 and Ã be an empty set. For m = 1, 2, . . . do the following:
(a) set α−(m) = α(l−1)−mλ. If u(l) < h

(
α−(m)

)
do Ã = Ã∪

{
α−(m)

}
. If u(l) ≥ h

(
α−(m)

)
,

stop the procedure. Go to item (b);
(b) set α+(m) = α(l−1) +mλ. If u(l) < h

(
α+(m)

)
do Ã = Ã∪

{
α+(m)

}
. If u(l) ≥ h

(
α+(m)

)
,

stop the procedure. Go to item (ii);

(ii) Generate α(l) ∼ U(min(Ã),max(Ã)).

This algorithm is implemented as follows.

Slice sampling algorithm: Let the current state of the Markov chain consist of(
α(l−1), β(l)

)
and u(l−1). For l-th iteration of the algorithm, l = 1, . . . , L:

(1) Generate U (l) ∼ U
(
0, h(α(l−1))

)
;

(2) Conditional on u(l) get Ã as described in step (i) above;

(3) Generate α(l) ∼ U(min(Ã),max(Ã));

4. Simulation study

In order to illustrate and compare performance of methods described above, a random
sample of size n = 25, 50, 100 and 200 with 0%, 10%, 20% and 30% of times right-censored
were generated from the Weibull distribution to take care of small, medium and large data
sets.

The shape parameter α was chosen to be 0.5, 1 and 2 in order to get a decreasing,
constant and increasing hazard function, respectively. The scale parameter β was fixed
equals to 1, β = 1. Appendix A shows results for α = β = 2. For each value of α and β we
generate M = 1, 000 different artificial data sets and the parameters were estimated using
MLE, IMH, RWM and SS. We fix hyperparameters values as a1 = a2 = b1 = b2 = 0.1 in
order to get a prior distribution with large variance.

For m-th generated artificial data set, we apply IMH, RWM and SS fixing L = 55, 000
iterations and the burn in B = 5, 000. We also consider jumps of size 10, i.e., only 1 draw
from every 10 was kept, in order to construct a sample of size 5, 000 to make inferences.

According with these values the estimates
(
α̃(m), β̃(m)

)
for (α, β) are given by the average

of the values generated, i.e.,

α̃(m) =
1

L

L∑
l=1

α(l) and β̃(m) =
1

L

L∑
l=1

β(l),

for m = 1, . . . ,M . We present results using the average of the M parameters estimates,
denoted by α and β. The comparisons among methods is done in terms of the sample Root
Mean Square Error (RMSE), given by

RMSE =

√√√√ 1

M

M∑
m=1

[
(α̂(m) − α)2 + (β̂(m) − β)2

]
and by mean of the sum of the modulus of the bias, given by

MBias =
1

M

M∑
m=1

[
|α̂(m) − α|+ |β̂(m) − β|

]
.

A smaller RMSE and MBias indicates a better overall quality of the estimates.
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Tables 1, 2 and 3 present the average of estimates (Est.) and the RMSE and MBias
values by method, for α = 0.5, 1 and 2, respectively. In these Tables we also present
the percentage of values accepted (% acc.) for IMH and RWM. The smaller RMSE and
MBias for each sample size and percentage of censuring are highlighted in bold.

Table 1. Average of estimates, RMSE and MBias by method. True parameters are α = 0.5 and β = 1.

Method Est.

Sample Size

25 50 100 200

0% 10% 20% 30% 0% 10% 20% 30% 0% 10% 20% 30% 0% 10% 20% 30%

MLE

α 0.530 0.529 0.529 0.532 0.516 0.514 0.517 0.518 0.506 0.504 0.505 0.505 0.505 0.505 0.595 0.505

β 1.025 1.026 1.029 1.037 1.002 1.004 1.009 1.014 1.003 1.001 1.003 1.003 1.002 1.004 1.003 1.004

RMSE 0.250 0.265 0.284 0.304 0.168 0.181 0.192 0.203 0.121 0.129 0.138 0.143 0.080 0.093 0.092 0.097

MBias 0.247 0.266 0.282 0.305 0.173 0.187 0.202 0.213 0.119 0.130 0.140 0.149 0.082 0.088 0.0096 0.102

IMH

α 0.525 0.525 0.534 0.528 0.510 0.510 0.508 0.512 0.505 0.504 0.506 0.508 0.505 0.502 0.502 0.504

β 1.029 1.026 1.011 1.046 1.014 1.001 1.010 1.012 1.007 1.008 1.002 1.004 0.999 0.994 0.999 1.006

RMSE 0.251 0.258 0.284 0.309 0.172 0.176 0.187 0.204 0.118 0.131 0.134 0.140 0.084 0.086 0.095 0.101

MBias 0.246 0.269 0.293 0.308 0.175 0.183 0.193 0.210 0.123 0.136 0.141 0.147 0.089 0.092 0.096 0.106

%acc 0.521 0.623 0.680 0.726 0.413 0.474 0.511 0.538 0.323 0.376 0.401 0.422 0.265 0.302 0.330 0.339

RWM

α 0.535 0.526 0.524 0.528 0.512 0.513 0.513 0.513 0.512 0.505 0.508 0.505 0.503 0.502 0.503 0.503

β 1.020 1.027 1.020 1.034 1.013 1.007 1.021 1.010 1.004 1.009 1.005 1.017 1.003 1.003 1.008 1.003

RMSE 0.250 0.260 0.266 0.303 0.171 0.178 0.186 0.195 0.114 0.125 0.131 0.138 0.079 0.085 0.089 0.095

MBias 0.251 0.261 0.271 0.301 0.172 0.181 0.190 0.199 0.117 0.129 0.134 0.143 0.080 0.086 0.094 0.099

%acc 9.967 11.791 12.904 13.675 6.794 8.253 9.052 9.506 4.829 5.791 6.417 6.694 3.364 4.103 4.508 4.756

SS

α 0.525 0.525 0.526 0.531 0.514 0.511 0.508 0.508 0.505 0.506 0.507 0.506 0.505 0.505 0.056 0.503

β 1.021 1.030 1.020 1.057 1.011 1.016 1.015 1.010 1.008 1.001 1.009 1.015 1.006 1.004 1.005 1.001

RMSE 0.242 0.256 0.282 0.318 0.166 0.175 0.191 0.196 0.113 0.124 0.132 0.146 0.081 0.086 0.092 0.096

MBias 0.238 0.258 0.280 0.316 0.168 0.178 0.194 0.201 0.116 0.128 0.136 0.150 0.082 0.087 0.096 0.101

Table 2. Average of estimates, RMSE and MBias by method. True parameters are α = 1 and β = 1.

Method Est.

Sample Size

25 50 100 200

0% 10% 20% 30% 0% 10% 20% 30% 0% 10% 20% 30% 0% 10% 20% 30%

MLE

α 1.059 1.063 1.064 1.065 1.031 1.032 1.032 1.036 1.012 1.010 1.010 1.009 1.009 1.009 1.009 1.009

β 1.026 1.029 1.032 1.035 1.003 1.006 1.009 1.013 1.002 1.002 1.003 1.002 1.003 1.003 1.002 1.003

RMSE 0.302 0.322 0.343 0.370 0.199 0.209 0.223 0.243 0.137 0.143 0.153 0.164 0.095 0.099 0.105 0.116

MBias 0.319 0.338 0.358 0.380 0.220 0.232 0.247 0.268 0.152 0.159 0.170 0.183 0.104 0.110 0.115 0.124

IMH

α 1.050 1.051 1.051 1.050 1.020 1.025 1.017 1.021 1.013 1.013 1.019 1.008 1.003 1.006 1.002 1.008

β 1.028 1.031 1.024 1.033 1.014 1.012 1.009 1.012 1.006 1.009 0.995 1.008 0.999 0.9988 0.999 1.004

RMSE 0.297 0.321 0.336 0.356 0.205 0.212 0.221 0.241 0.146 0.147 0.159 0.174 0.104 0.112 0.111 0.121

MBias 0.319 0.343 0.367 0.377 0.225 0.231 0.244 0.262 0.164 0.169 0.176 0.193 0.117 0.125 0.128 0.135

%acc 0.542 0.589 0.638 0.691 0.425 0.443 0.482 0.517 0.331 0.356 0.384 0.413 0.278 0.284 0.315 0.332

RWM

α 1.064 1.060 1.054 1.046 1.022 1.020 1.019 1.027 1.020 1.013 1.010 1.013 1.005 1.004 1.011 1.003

β 1.020 1.040 1.041 1.030 1.013 1.017 1.012 1.019 1.004 1.004 1.005 1.009 1.003 1.003 1.003 1.004

RMSE 0.296 0.313 0.338 0.355 0.199 0.211 0.218 0.236 0.135 0.144 0.151 0.162 0.093 0.099 0.106 0.116

MBias 0.320 0.336 0.359 0.376 0.217 0.230 0.239 0.258 0.150 0.160 0.166 0.179 0.105 0.112 0.116 0.128

%acc 19.39120.96322.66524.39813.42814.61715.99315.554 9.557 10.36011.39212.438 6.697 7.294 8.101 8.803

SS

α 1.059 1.060 1.040 1.063 1.027 1.022 1.019 1.021 1.016 1.001 1.013 1.010 1.007 1.007 1.005 1.005

β 1.023 1.018 1.028 1.035 1.008 1.012 1.021 1.014 1.001 1.011 0.997 1.010 1.003 1.008 1.006 1.003

RMSE 0.295 0.308 0.335 0.354 0.198 0.207 0.210 0.234 0.134 0.134 0.147 0.158 0.092 0.097 0.1030.115

MBias 0.317 0.331 0.357 0.368 0.215 0.225 0.236 0.255 0.148 0.158 0.165 0.177 0.101 0.109 0.1120.121
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Table 3. Average of estimates, RMSE and MBias by method. True parameters are α = 2 and β = 1.

Method Est.

Sample Size

25 50 100 200

0% 10% 20% 30% 0% 10% 20% 30% 0% 10% 20% 30% 0% 10% 20% 30%

MLE

α 2.119 2.132 2.143 2.152 2.062 2.066 2.073 2.077 2.024 2.023 2.024 2.014 2.018 2.018 2.018 2.019

β 1.026 1.029 1.036 1.041 1.003 1.006 1.011 1.013 1.002 1.003 1.004 1.005 1.003 1.004 1.002 1.003

RMSE 0.456 0.487 0.521 0.559 0.291 0.306 0.325 0.346 0.199 0.208 0.221 0.237 0.138 0.144 0.151 0.159

MBias 0.463 0.485 0.515 0.550 0.315 0.328 0.347 0.373 0.217 0.226 0.239 0.256 0.150 0.158 0.164 0.171

IMH

α 2.102 2.087 2.130 2.123 2.045 2.055 2.055 2.054 2.023 2.006 2.021 2.026 2.004 2.002 2.011 2.002

β 1.028 1.033 1.034 1.025 1.013 1.004 1.004 1.008 1.006 1.003 0.999 1.010 0.999 1.004 0.999 1.006

RMSE 0.439 0.472 0.534 0.541 0.310 0.326 0.332 0.366 0.281 0.222 0.234 0.247 0.160 0.166 0.173 0.180

MBias 0.461 0.491 0.550 0.555 0.332 0.342 0.354 0.390 0.237 0.241 0.250 0.260 0.174 0.181 0.186 0.192

%acc 0.543 0.541 0.594 0.658 0.426 0.446 0.465 0.491 0.342 0.354 0.368 0.388 0.289 0.297 0.308 0.315

RWM

α 2.123 2.111 2.119 2.116 2.043 2.044 2.048 2.053 2.039 2.019 2.017 2.027 2.010 2.014 2.012 2.011

β 1.021 1.026 1.060 1.048 1.014 1.009 1.015 1.026 1.004 1.008 1.014 1.004 1.003 1.003 1.002 1.002

RMSE 0.427 0.469 0.484 0.512 0.284 0.299 0.314 0.336 0.198 0.199 0.209 0.229 0.133 0.141 0.149 0.156

MBias 0.457 0.478 0.500 0.535 0.305 0.320 0.337 0.362 0.215 0.218 0.227 0.246 0.145 0.156 0.163 0.168

%acc 35.54337.14339.09141.06825.68227.07528.80930.68218.68119.86520.80922.34613.23714.01314.91816.021

SS

α 2.133 2.104 2.120 2.150 2.049 2.072 2.067 2.076 2.034 2.025 2.031 2.026 2.016 2.016 2.011 2.018

β 1.018 1.039 1.037 1.042 1.007 1.002 1.014 1.016 0.997 1.004 1.001 1.005 1.004 1.003 1.002 1.002

RMSE 0.458 0.470 0.503 0.557 0.287 0.300 0.321 0.338 0.202 0.206 0.215 0.231 0.139 0.145 0.150 0.157

MBias 0.471 0.484 0.511 0.566 0.307 0.321 0.346 0.365 0.219 0.223 0.234 0.252 0.152 0.160 0.164 0.173

Fixing the sample size n and increasing the censuring percentage (% cens.), the values
of RMSE and MBias increases for all methods. In the other hand, when the number
of sample size increases, for censuring percentage fixed, the RMSE and MBias values
decreases in all cases and hence the estimation precision of the parameters increases.

Results shows that in general the RMSE and MBias values of the RWM or SS outper-
forms MLE and IMH. Besides, as we can note RWM and SS present a complementarity.
For α = 0.5, the SS presents smaller RMSE and MBias for 0% and 10% of censuring
and n = {25, 50, 100}; while RWM presents smaller RMSE and MBias for 20% and 30%
and all sample size considered. For α = 1, the SS presents smaller RMSE and MBias;
while for α = 2, the RWM presents smaller RMSE and MBIas.

Besides, note that the percentage of acceptance from RWM is satisfactorily; while the
percentage of the IMH is very low indicating a slow convergence of the method. We verify
the convergence of IMH, RWM and SS using the effective sample size (Kass et al., 1998)
and integrated autocorrelation time (IAT). The effective sample size (ESS) is the number of
effectively independent draws from posterior distribution. The method with larger ESS is
the most efficient. IAT is a MCMC diagnostic which estimates the number of autocorrelated
samples, on average, required to produce one independent draws sample. The method with
the lowest IAT is the most efficient. The EES and IAT values were obtained using the coda
and LaplacesDemon packages in the R software.

Tables 11, 12 and 13 in Appendix B show the average of ESS and IAT by method for
α = 0.5, 1, 2, respectively. For all simulated cases SS present better performance than IMH
and RWM, i.e., higher ESS and smaller IAT average values than IMH and RWM. These
results show us that SS can be an effective alternative in relation to IMH and RWM to
get MCMC samples from posterior distributions of Weibull distribution parameters when
Gamma prior distributions are assumed. In appendix C we present an empirical illustration
of the convergence of the IMH, RWM and SS.
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5. Application

In this Section, we examine the performance of MLE, IMH, RWM and SS on three pub-
licly available data sets. The first one is a dataset on the times of failure described
in Whitmore (1983). The second one is a Leukemia data set downloaded from web-
site https://docs.ufpr.br/∼giolo/Livro/ApendiceA/leucemia.txt. The third one dataset
refers to a clinical study carried out with 28 patients with cancer of the head and neck that
did not respond to chemotherapy. This dataset is described by Lee and Wang (2003). In
order to compare performance of methods we consider the RMSE in relation to empirical
distribution function, given by

RMSE =

√√√√ 1

n

n∑
i=1

[
F̂ (xi)− F (xi)

]2
,

where F̂ (x) is obtained by substituting the estimates of α and β (obtained by each method)
while F (xi) is the empirical distribution function obtained from Kaplan-Meier estimates,
for i = 1, . . . , n. The method with the minimum RMSE becomes the best method for the
estimation of Weibull parameters among the candidate methods.

5.1 Aluminium reduction cells dataset

Whitmore (1983) describe a data set on the times of failure of 20 aluminium reduction
cells. This data set is also presented by Lawless (1974). The dataset has n = 20 times and
3 (15%) censured times. We consider that these failure times follows a Weibull distribution
with parameters α and β as in model (1).

Table 4 shows the parameters estimates and RMSE values by method. For this data set,
the SS method presented smaller RMSE values than other methods.

Table 4. Parameters estimates and RMSE by method.

Parameter
Method

MLE IMH RWM SS
α 2.57623 2.56527 2.54808 2.52090
β 0.23570 0.24831 0.25082 0.25404

RMSE 0.00133 0.00082 0.00076 0.00071

Figure 1 shows the estimated survival function by MLE and SS. The graphics of es-
timated survival by IMH and RWM are very close to SS. Due this, to maintain a good
visualization we display only the graphic of the estimated survival by MLE and SS. In
this Figure the step function is the Kaplan-Meyer estimates. The Kaplan-Meyer estimates
were obtained using the survival package and the survfit command of the R software.

Table 5 shows the ESS and IAT values for IMH, RWM and SS. For this dataset, SS
present better performance than IMH and RWM, i.e., highest ESS value and smallest IAT
value by parameter.

Table 5. ESS and IAT values from IMH, RWM and SS.

Parameter
ESS IAT

I MH RWM SS IMH RWM SS
α 185.2412 1878.3580 3001.0000 149.9382 12.7126 4.5945
β 302.7919 2164.6850 3001.0000 75.2247 8.6047 4.1007

https://docs.ufpr.br/~giolo/Livro/ApendiceA/leucemia.txt
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Figure 1. Estimated Survival by MLE and SS.

Figure 2 shows the traceplot and the ergodic mean for generated α values by method.
Figure 3 shows the autocorrelation time. As one can note in these Figures, the α values
generated by RWM and SS are well mixed and present satisfactory stability for ergodic
mean and satisfactory autocorrelation. In the other hand, IMH present a poor mixing and
not satisfactory autocorrelation. These results together with RMSE value show us that for
this dataset SS present better performance than MLE, IMH and RWM.

5.2 Leukemia dataset

The second real data set considered is the Leukemia dataset available on website
https://docs.ufpr.br/ giolo/Livro/ApendiceA/. This dataset has n = 103 patients with
39 (37.86%) of censured times. For more details see Colosimo and Giolo (2006).

Table 6 shows the parameters estimates and RMSE values by method. For this dataset
the four methods presented similar results; with a slight advantage for Bayesian methods.

Table 6. Parameters estimates and RMSE by method.

Parameter
Method

MLE IMH RWM SS
α 1.05635 1.05038 1.05232 1.05337
β 0.20683 0.20793 0.20855 0.20840

RMSE 0.00042 0.00041 0.00041 0.00041

Figure 4 shows the estimated survival function by SS. As graphics of the four methods
are very close between themselves, so we display only the graphic of the estimated survival
by SS in order to maintain a good visualization.

Table 7 shows the ESS and IAT values for IMH, RWM and SS. Figures 5 and 6 show the
traceplot, the ergodic mean and autocorrelation time for generated α values by method.
As we can note, in opposite to RWM and SS, the sample generated by IMH does not mix
well, the ergodic mean does not present satisfactory stability as well as autocorrelation.
Thus, as example 5.1 described earlier, we have that sampled values by SS present better
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Figure 2. Traceplots and ergodic mean by method.
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Figure 3. Autocorrelation by method.

performance than IMH and RWM, i.e., satisfactorily stability and autocorrelation with
higher ESS and smaller IAT values.

Table 7. ESS and IAT values from IMH, RWM and SS.

Parameter
ESS IAT

IMH RWM SS IMH RWM SS
α 327.2075 1801.3870 3001.0000 87.2039 15.6022 2.0785
β 861.9586 2281.6410 3131.1140 21.1406 6.6192 2.0715
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Figure 4. Estimated Survival by SS.
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Figure 5. Traceplots and Ergodic mean by method.
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Figure 6. Autocorrelation by method.

5.3 Head and Neck dataset

The Head and Neck dataset described in Lee and Wang (2003) refers to survival times,
in weeks, of n = 28 patients with cancer of the head and neck that did not respond to
chemotherapy. The dataset has 11 (39.29%) censured times.

Table 8 shows the parameters estimates and RMSE values by method. For this data set,
the MLE presented smallest RMSE value. But, SS again present smaller RMSE value than
IMH and RWM.

Table 8. Parameters estimates and RMSE by method.

Parameter
Method

MLE IMH RWM SS
α 2.04158 2.02477 1.98320 1.97094
β 0.00315 0.00460 0.00545 0.00535

RMSE 0.00149 0.00506 0.00760 0.00470

Figure 7 shows the estimated survival function by MLE and SS. The graphics of esti-
mated survival by IMH and RWM are very close to SS, so due this, to maintain a good
visualization we display only the graphic of the estimated survival by MLE and SS.
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Figure 7. Estimated Survival by MLE and SS.
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Table 9 shows the ESS and IAT values for IMH, RWM and SS. For this data set, SS
also present better performance than IMH and RWM. The traceplot, ergodic mean and
the autocorrelation times are similar to graphics presented in earlier examples.

Table 9. ESS and IAT values from IMH, RWM and SS.

Parameter
ESS IAT

IMH RWM SS IMH RWM SS
α 13.8061 125.3216 926.3438 2609.3300 231.7020 30.5874
β 19.8969 192.9900 1194.3350 97.6168 88.4905 25.8853

6. Final Remarks

In this paper we described four methods for estimating the Weibull distribution parameters
in presence of right censored times. The first one is the standard Maximum likelihood
estimation and the others three are Bayesian computational methods namely independent
Metropolis-Hastings, random walk metropolis and Slice sampling. The performance of
these methods were compared using the Monte Carlo simulation based on the RMSE
criterion and bias. The RMSE and bias were calculated for different sample size and
percentages of censures. We illustrate the application of the methods using three real
datasets available on the literature.

Based on RMSE criterion and bias, results from artificial show a complementarity be-
tween RWM and SS. Besides, results obtained report evidence that MCMC samples got
with SS has better properties (e.g. higher ESS and smaller IAT values) than IMH and
RWM, which are standard methods to get samples from posterior distribution.

These results show that SS can be an effective alternative to standard method of es-
timation of Weibull distribution parameters. Moreover, two advantages of the SS is that
method it is kind of Gibbs sampling and therefore easy to be implemented and do not
need to specify a candidate-generating density. A disadvantage, is the time simulation
that is greater than IMH and RWM. It is due the way that we implement SS, due the
function h(α) do not have explicit inverse. The source code used in the simulation study
and applications was implemented in R software and can be obtained by emailing the
authors.
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7. Appendix A: Simulation Results for α = β = 2

In this Appendix we present the average of estimates and the RMSE and MBias values
by method, for simulated datasets with α = β = 2. Estimates by method are in Table
10. This Table also present the percentage of values accepted (%acc.) for IMH and RWM.
The smaller RMSE and MBias for each sample size and percentage of censuring are
highlighted in bold. Similar to Table 3 (α = 2 and β = 1), for this case, RWM present
smaller RMSE values than others three methods considered.
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Table 10. Average of estimates, RMSE and MBias by method. True parameters are α = 2 and β = 2.

Method Est.

Sample Size

25 50 100 200

0% 10% 20% 30% 0% 10% 20% 30% 0% 10% 20% 30% 0% 10% 20% 30%

MLE

α 2.119 2.143 2.157 2.193 2.062 2.073 2.086 2.014 2.024 2.024 2.027 2.033 2.018 2.018 2.023 2.027

β 2.001 2.002 2.019 2.057 2.010 2.007 2.007 2.020 2.004 2.005 2.007 2.012 2.002 2.002 2.003 2.003

RMSE 0.445 0.503 0.596 0.763 0.298 0.321 0.371 0.467 0.198 0.220 0.256 0.311 0.138 0.151 0.176 0.211

MBias 0.450 0.512 0.602 0.774 0.301 0.335 0.388 0.375 0.204 0.232 0.267 0.319 0.143 0.159 0.184 0.229

IMH

α 2.065 2.113 2.142 2.109 2.027 2.050 2.077 2.060 2.019 2.031 2.031 2.021 2.012 2.026 2.019 2.007

β 1.947 1.948 1.970 2.035 1.977 1.972 1.991 2.015 1.996 1.995 1.996 2.002 1.997 1.995 1.995 2.004

RMSE 0.416 0.462 0.567 0.723 0.279 0.308 0.360 0.454 0.198 0.222 0.245 0.306 0.140 0.155 0.176 0.210

MBias 0.444 0.487 0.577 0.722 0.303 0.333 0.388 0.475 0.209 0.237 0.265 0.329 0.155 0.168 0.187 0.234

%acc 2.161 2.534 3.201 4.569 1.524 1.786 2.255 3.112 1.074 1.256 1.598 2.191 0.760 8.891 1.125 1.568

RWM

α 2.115 2.110 2.129 2.127 2.039 2.044 2.050 2.070 2.037 2.015 2.021 2.024 2.009 2.011 2.021 2.021

β 1.963 1.934 1.962 2.019 1.979 1.979 1.978 1.991 1.991 1.983 1.991 1.006 1.994 1.996 1.996 2.011

RMSE 0.408 0.455 0.548 0.677 0.277 0.305 0.358 0.442 0.195 0.206 0.242 0.305 0.1320.148 0.174 0.209

MBias 0.435 0.471 0.551 0.676 0.298 0.329 0.381 0.463 0.202 0.223 0.262 0.312 0.1410.157 0.180 0.227

%acc 22.75625.59732.47141.70316.11218.90023.49631.31811.49213.45516.88422.779 8.126 9.513 12.03716.490

SS

α 2.128 2.107 2.151 2.140 2.068 2.077 2.074 2.079 2.065 2.053 2.048 2.045 2.054 2.051 2.046 2.042

β 1.956 1.955 1.976 2.015 2.022 2.024 1.991 2.002 2.005 1.987 1.991 1.993 2.005 1.999 1.997 2.002

RMSE 0.427 0.456 0.549 0.684 0.279 0.314 0.360 0.446 0.210 0.222 0.247 0.310 0.148 0.160 0.184 0.214

MBias 0.446 0.473 0.559 0.696 0.391 0.451 0.383 0.469 0.231 0.236 0.268 0.318 0.161 0.175 0.199 0.235

8. Appendix B: Average of ESS and IAT

This section present the average values of ESS and IAT. Tables 11, 12 and 13 show the
average values of ESS and IAT for α = 0.5, 1, 2, respectively, for β = 1. As discussed in
the text, SS presented better performance than IMH and RWM, for all simulated cases.

Table 11. Average of ESS and IAT by method. True parameters are α = 0.5 and β = 1.

Sample
% cens.

ESS IAT

IMH RWM SS IMH RWM SS

size α β α β α β α β α β α β

n = 25

0% 10.914 795.241 1583.969 2725.350 3007.365 3007.511 235.005 2.0573 1.983 1.149 1.0194 1.0217

10% 13.271 2003.655 1894.993 2969.001 3009.271 3014.959 188.050 1.3012 1.635 1.040 1.0217 1.0211

20% 14.163 2378.184 2033.750 2994.887 3013.765 3014.426 176.833 1.1726 1.530 1.032 1.0207 1.0225

30% 14.770 1881.143 2071.532 2974.020 3013.457 3013.887 170.213 1.3297 1.505 1.041 1.0229 1.0230

n = 50

0% 10.454 662.594 1151.383 2617.865 3003.974 3019.616 274.418 2.2372 2.679 1.200 1.0253 1.0194

10% 11.715 2054.291 1468.025 2957.595 3025.986 3012.777 231.395 1.2751 2.112 1.044 1.0207 1.0229

20% 12.796 2560.670 1586.683 2995.093 3002.794 3014.110 213.372 1.1214 1.952 1.031 1.0223 1.0223

30% 12.526 1917.031 1641.065 2965.575 3018.973 3006.601 218.281 1.2673 1.899 1.046 1.0208 1.0205

n = 100

0% 11.028 527.134 840.572 2462.283 3010.309 3010.545 311.021 2.7713 3.650 1.272 1.0253 1.0251

10% 12.443 1989.185 1084.941 2957.989 3009.049 3018.396 266.081 1.3451 2.845 1.044 1.0241 1.0230

20% 11.933 2520.803 1195.004 3003.145 3017.355 3009.566 254.151 1.1474 2.579 1.027 1.0231 1.0208

30% 11.603 1761.648 1222.506 2949.266 3007.586 3011.072 253.337 1.3425 2.531 1.054 1.0239 1.0216

n = 200

0% 11.794 353.798 592.434 2260.110 3013.155 3008.449 328.180 4.1854 5.161 1.378 1.0225 1.0227

10% 11.895 1774.786 776.829 2947.484 3013.209 3000.633 292.235 1.5353 3.934 1.052 1.0224 1.0241

20% 12.531 2407.582 859.086 3000.828 3006.693 3006.679 279.872 1.2021 3.573 1.027 1.0217 1.0233

30% 12.629 1504.042 891.319 2920.584 3015.037 3019.086 280.305 1.4977 3.448 1.059 1.0242 1.0186
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Table 12. Average of ESS and IAT by method. True parameters are α = 1 and β = 1.

Sample
% cens.

ESS IAT

IMH RWM SS IMH RWM SS

size α β α β α β α β α β α β

n = 25

0% 11.264 794.673 2419.736 2913.059 3012.627 3014.594 230.582 2.060 1.273 1.065 1.022 1.023

10% 12.322 1281.479 2561.085 2974.554 3018.099 3001.146 208.196 1.656 1.202 1.040 1.019 1.023

20% 12.911 1883.033 2652.948 2994.813 3023.087 3018.130 196.841 1.374 1.161 1.029 1.022 1.020

30% 14.138 2153.375 2719.746 2998.420 3009.461 3008.820 178.096 1.239 1.137 1.029 1.022 1.024

n = 50

0% 10.503 647.447 1999.249 2860.893 3006.620 3011.349 271.660 2.290 1.542 1.086 1.023 1.024

10% 11.251 1237.764 2168.585 2948.539 3013.023 3003.899 255.996 1.702 1.418 1.052 1.026 1.024

20% 11.639 1962.131 2324.082 2996.799 3011.954 3006.697 236.576 1.323 1.319 1.031 1.024 1.025

30% 12.068 2376.468 2444.467 3006.634 3018.068 3016.384 215.508 1.178 1.262 1.026 1.021 1.021

n = 100

0% 11.113 502.106 1561.409 2774.631 3012.561 3014.684 304.594 2.731 1.975 1.123 1.024 1.023

10% 12.571 1015.858 1730.375 2918.989 3007.278 3003.994 285.890 1.968 1.784 1.067 1.025 1.024

20% 11.512 1835.407 1903.172 2978.579 3012.023 3009.155 269.729 1.472 1.619 1.037 1.023 1.023

30% 12.671 2282.744 2035.642 2990.367 3010.814 3018.307 243.258 1.258 1.515 1.030 1.021 1.022

n = 200

0% 11.819 389.953 1151.451 2632.049 3011.119 3013.204 334.912 4.671 2.666 1.183 1.023 1.022

10% 11.585 841.685 1289.762 2861.248 3015.521 3013.596 321.082 3.229 2.370 1.090 1.023 1.022

20% 13.528 1776.513 1457.243 2964.628 3015.412 3007.889 303.747 1.682 2.106 1.042 1.022 1.025

30% 13.770 2175.792 1579.200 3016.439 3009.794 3010.989 275.250 1.331 1.950 1.025 1.021 1.024

Table 13. Average of ESS and IAT by method. True parameters are α = 2 and β = 1.

Sample
% cens.

ESS IAT

IMH RWM SS IMH RWM SS

size α β α β α β α β α β α β

n = 25

0% 11.471 813.218 2873.160 2982.812 3015.625 3004.231 235.527 2.184 1.079 1.036 1.024 1.023

10% 11.975 1114.657 2899.846 2994.253 3018.810 3000.619 214.906 1.856 1.069 1.028 1.021 1.024

20% 12.749 1397.766 2928.011 3002.539 3010.388 3010.348 203.713 1.611 1.060 1.027 1.025 1.022

30% 13.643 1678.263 2934.266 3000.876 3006.185 3008.167 187.757 1.450 1.058 1.026 1.024 1.022

n = 50

0% 10.448 630.884 2726.118 2966.378 3008.405 3015.781 274.573 2.330 1.133 1.041 1.025 1.024

10% 10.848 909.238 2774.491 2993.956 3002.692 3018.706 257.625 1.992 1.115 1.031 1.023 1.021

20% 11.245 1279.473 2834.220 2992.731 3007.845 3009.239 251.049 1.690 1.092 1.028 1.020 1.023

30% 12.097 1767.193 2890.282 3008.806 3015.420 3018.861 231.344 1.413 1.075 1.026 1.024 1.024

n = 100

0% 12.254 481.225 2426.487 2945.122 3014.232 3006.232 309.072 3.111 1.264 1.055 1.022 1.025

10% 11.489 698.791 2508.935 2968.794 3012.290 3012.697 299.728 2.421 1.225 1.044 1.022 1.023

20% 11.829 1141.353 2599.839 2995.714 3013.949 3009.181 289.829 1.869 1.180 1.029 1.023 1.022

30% 11.612 1728.197 2695.750 2999.057 3007.794 3011.513 273.264 1.528 1.143 1.027 1.021 1.023

n = 200

0% 13.146 359.136 1985.809 2875.204 3007.318 3014.285 337.372 5.656 1.538 1.080 1.021 1.024

10% 11.529 580.206 2117.061 2927.680 3009.346 3004.812 339.057 3.890 1.444 1.058 1.024 1.021

20% 12.371 906.850 2225.303 2968.866 3011.263 2998.029 301.780 2.787 1.372 1.043 1.022 1.025

30% 15.907 1722.439 2344.668 2998.928 3010.315 3016.226 296.508 1.838 1.307 1.028 1.022 1.022

Apendix C: Empirical convergence

In this appendix we present an empirical illustration of the convergence of IMH, RWM and
SS for the α sampled values. We select randomly a data set from one of the M = 1, 000
generated and present the traceplot, the graphics of the ergodic mean and autocorrelation
of the sampled values by method.

Figure 8 shows the traceplots, the ergodic mean and autocorrelation for sampled values
for α. As we can note, sampled values by IMH does not mix well and stability for ergodic
mean and autocorrelation are not satisfactory. In the other hand, sampled values by RWM
and SS are well mixed and present satisfactory stability for ergodic mean and autocorrela-



42 Saraiva and Suzuki

tion. For the β sampled values the three methods present satisfactory properties, i.e., mix
well and satisfactory stability for ergodic and autocorrelation.
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Figure 8. Traceplots, ergodic mean and autocorrelation by method.
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