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Abstract

In this article, we introduce a new three-parameter odd log-logistic power Lindley dis-
tribution and discuss some of its properties. These include the shapes of the density and
hazard rate functions, mixture representation, the moments, the quantile function, and
order statistics. Maximum likelihood estimation of the parameters and their estimated
asymptotic standard errors are derived. Three algorithms are proposed for generating
random data from the proposed distribution. A simulation study is carried out to ex-
amine the bias and mean square error of the maximum likelihood estimators of the
parameters. An application of the model to two real data sets is presented finally and
compared with the fit attained by some other well-known two and three-parameter dis-
tributions for illustrative purposes. It is observed that the proposed model has some
advantages in analyzing lifetime data as compared to other popular models in the sense
that it exhibits varying shapes and shows more flexibility than many currently available
distributions.

1. Introduction

The Lindley distribution specified by the probability density function (pdf)

f(x) =
θ2

θ + 1
(1 + x) exp(−θx), x > 0, θ > 0.

was introduced by Lindley (1958) in the context of Bayesian statistics. Ghitany et al. (2008)
investigated properties of the Lindley distribution with application and outlined that the
Lindley distribution is a better model than one based on the exponential distribution, in
other words many mathematical properties of the Lindley distribution are more flexible
than those of the exponential distribution. Ghitany et al. (2008) showed that the Lindley
distribution can be written as a mixture of an exponential distribution and a gamma
distribution with shape parameter 2.

Gleaton and Lynch (2004, 2006) introduced a new family of distributions which is called
“the Generalized log-logistic family of distributions”. The cumulative distribution function
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(cdf) of this family is given by

F (x;α, ξ) =
G(x; ξ)α

G(x; ξ)α +G(x; ξ)α
, (1)

where α > 0 is the shape parameter, G(x; ξ) is the cdf of the baseline distribution,
G(x; ξ) = 1−G(x; ξ) is the survival function and ξ is the set of parameters of the baseline
distribution G(·). In addition, the pdf of the family is

f(x;α, ξ) =
α g(x; ξ)G(x; ξ)α−1G(x; ξ)α−1[

G(x; ξ)α +G(x; ξ)α
]2 .

This family was called later the odd log-logistic family of distributions. If the baseline
distribution possesses a closed form cdf, the generated new distribution will also possess a
closed form cdf. One can easily show that

log
[
F (x;α,ξ)

F (x;α,ξ)

]
log
[
G(x;ξ)

G(x;ξ)

] = α.

Therefore α is the quotient of the log-odds ratio for the generated and baseline distri-
butions.

Recently, Ghitany et al. (2013) proposed a generalization of the Lindley distribution,
the power Lindley distribution, with cdf

G(x) = 1− (1 +
λ

1 + λ
xβ)e−λx

β

, x > 0, β, λ > 0.

Now, by letting G(x; ξ) in (1) to be the cdf of the power Lindley distribution, where
ξ = (β, λ) is the set of parameters, we can obtain a new extension of the power Lindley
distribution, called the odd log-logistic power Lindley (henceforth, OLL-PL) distribution.
The cdf, pdf and hazard rate function of this distribution are given by

F (x;α, β, λ) =

[
1− (1 + λ

1+λ x
β)e−λx

β
]α[

1− (1 + λ
1+λ x

β)e−λxβ
]α

+ (1 + λ
1+λ x

β)α e−λαxβ
, (2)

f(x;α, β, λ) =
αβ λ2 xβ−1 (1 + xβ) e−αλx

β
[
1− (1 + λ

1+λ x
β)e−λx

β
]α−1

(1 + λ
1+λ x

β)α−1

(1 + λ)
{[

1− (1 + λ
1+λ x

β)e−λxβ
]α

+ (1 + λ
1+λ x

β)α e−λαxβ
}2 ,

x > 0, (3)

and

h(x;α, β, λ) =
αβ λ2 xβ−1 (1 + xβ)

[
1− (1 + λ

1+λ x
β)e−λx

β
]α−1

(1 + λ) (1 + λ
1+λ x

β)
{[

1− (1 + λ
1+λ x

β)e−λxβ
]α

+ (1 + λ
1+λ x

β)α e−λαxβ
} ,
(4)
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respectively, where α, β, λ > 0. We write X ∼ OLL-PL(α, β, λ) if the pdf of X can be
written as (3). The new distribution is very flexible in the sense that it can be skewed
and symmetric depending upon the specific choices of the parameters. Furthermore, the
associated cdf is in closed form. Consequently, this distribution can be applied to mod-
elling censored data too. This is a major motivation to carry out this work. Furthermore,
in reliability engineering and lifetime analysis, we often assume that the failure times
of the components within each system follow the exponential lifetimes; see, for example,
Adamidis and Loukas (1998) among others and the references therein. This assumption
may seem unreasonable because, for the exponential distribution, the hazard rate is a
constant, whereas many real-life systems do not have constant hazard rates, and the com-
ponents of a system are often more rigid than the system itself, such as bones in a human
body, balls of a steel pipe, etc. Accordingly, it becomes reasonable to consider the com-
ponents of a system to follow a distribution with a non-constant hazard function that has
flexible hazard function shapes.

From Figure 1, we see that this model can be bimodal (α = 0.5, β = 3, λ = 2) which
is rare in classic lifetime distributions. We can also observe that when α and λ are fixed,
then for small values of β, the density is often decreasing. However, for larger values of
β, the density may not be decreasing any longer and it can be unimodal when α = 1.5
and 3 and unimodal, bimodal or decreasing-increasing-decreasing when α = 0.1 and 0.5.
In addition, it seems that λ affects the height of the density plots.

From Figure 2, we can see that the hazard function is often decreasing for small values
of β. For larger values of β, the hazard function can be increasing (for example for the
case (α = 0.5, β = 3, λ = 2)) and bath-tub shaped (for example for the case (α = 0.1, β =
3, λ = 2)). In addition, the hazard function can be upside-down bath-tub shaped too (for
example for the case (α = 3, β = 0.5, λ = 2)).

In addition, as we will see in subsection 2.4, the additional parameter α plays the role
of controlling the tail weights of the new distribution.

An interpretation of the OLL-PL distribution can be given as follows: Let X be a lifetime
random variable having power Lindley distribution. The odds ratio that an individual (or
component) following the lifetime X will die (fail) at time x is y = G(x;β, λ)/Ḡ(x;β, λ).
Here, one can consider this odds of death as a random variable, say Y . Now, if we model the
randomness of the “odds of death” using the log-logistic distribution with scale parameter
1 and shape parameter α, (FY (y) = yα/[1 + yα] for y > 0), then we can write

Pr(Y ≤ y) = FY
(
G(x;β, λ)/Ḡ(x;β, λ)

)
,

which is given by (2), see Cooray (2006) for more details regarding this interpretation.

Special Cases:

• For α = 1, we obtain the power Lindley distribution.

• For β = 1, we obtain the odd log-logistic Lindley distribution (Ozel et al., 2016).

• For α = β = 1, we obtain the Lindley distribution.

We hope that this new distribution can be applied to describing lifetime data more
properly than the existing distributions. The major motivation of introducing the OLL-PL
distribution can be summarized as follows. (i) The OLL-PL distribution contains several
lifetime distributions as special cases, such as the power Lindley (PL) distribution due to
Ghitany et al. (2013) for α = 1. (ii) It is shown in Section 2 that the OLL-PL distribution
can be viewed as a mixture of exponentiated power Lindley (EPL) distributions introduced
by Warahena-Liyanage and Pararai (2014) and Ashour and Eltehiwy (2015). (iii) The OLL-
PL distribution is a flexible model which can be widely used for modeling lifetime data.
(iv) The OLL-PL distribution exhibits monotone as well as non-monotone hazard rates
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Figure 1. Pdfs of the OLL-PL model for selected α, β and λ.

but does not exhibit a constant hazard rate, which makes this distribution to be superior
to other lifetime distributions, which exhibit only monotonically increasing/decreasing, or
constant hazard rates. (v) The OLL-PL distribution outperforms several of the well-known
lifetime distributions with respect to some real data examples.

The rest of the article is organized as follows: In Section 2, we discuss some structural
properties of the OLL-PL distribution. Section 3 deals with the classical method of esti-
mation (using maximum likelihood) of the model parameters of the OLL-PL distribution,
and a small simulation study is conducted to verify the efficacy of the said estimation
procedure. In Section 4, two real data sets are considered as an example to illustrate the
applicability of OLL-PL distribution. In Section 5, we provide some concluding remarks.

2. Structural properties

In this section, we discuss some structural properties of the OLL-PL distribution.
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Figure 2. Hazard rate functions of the OLL-PL model for selected α, β and λ.

2.1 Mixture representations for the pdf and cdf

The EPL distribution, introduced by Warahena-Liyanage and Pararai (2014) and Ashour
and Eltehiwy (2015), has the pdf

fEPL(x;α, β, λ) =
αλ2

λ+ 1
(1 + xβ)xβ−1e−λx

β

[
1− (1 +

λ

1 + λ
xβ)e−λx

β

]α−1

, x > 0, α, β, λ > 0.(5)

We write X ∼ EPL(α, β, λ) if the pdf of X can be expressed as (5). In addition, the cdf
of the EPL model is

FEPL(x;α, β, λ) =

[
1− (1 +

λ

1 + λ
xβ)e−λx

β

]α
, x > 0.

Now, we show that the OLL-PL distribution can be viewed as a mixture of EPL distri-
butions. Using the generalized binomial expansion, the numerator of (2) can be written
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as [
1− (1 +

λ

1 + λ
xβ)e−λx

β

]α
=

∞∑
k=0

ak

[
1− (1 +

λ

1 + λ
xβ)e−λx

β

]k
,

where ak =
∑∞

i=k(−1)i+k
(
α

i

)(
i

k

)
and the denominator of (2) can be written as

[
1− (1 +

λ

1 + λ
xβ)e−λx

β

]α
+ (1 +

λ

1 + λ
xβ)α e−λαx

β

=

∞∑
k=0

bk

[
1− (1 +

λ

1 + λ
xβ)e−λx

β

]k
,

where bk = ak+(−1)k
(
α

k

)
. Therefore the cdf of the OLL-PL distribution can be expressed

as

F (x) =

∑∞
k=0 ak

[
1− (1 + λ

1+λ x
β)e−λx

β
]k

∑∞
k=0 bk

[
1− (1 + λ

1+λ x
β)e−λxβ

]k =

∞∑
k=0

ck

[
1− (1 +

λ

1 + λ
xβ)e−λx

β

]k
,

where c0 = a0

b0
= 0 and for k ≥ 1 we have

ck = b−1
0

[
ak − b−1

0

k∑
r=1

br ck−r

]
.

Or equivalently, we can write the cdf of OLL-PL as

F (x) =

∞∑
k=1

ckFEPL(x; k, β, λ) =

∞∑
k=0

ck+1FEPL(x; k + 1, β, λ), (6)

where FEPL(x; k+ 1, β, λ) denotes the cdf of the EPL distribution with parameters k+ 1,
β and λ. We note that

∑∞
k=0 ck+1 = 1.

By differentiating equation (6), the pdf of the OLL-PL distribution can be expanded as

f(x) =

∞∑
k=0

ck+1 fEPL(x; k + 1, β, λ),

where fEPL(x; k+ 1, β, λ) denotes the pdf of the EPL distribution with parameters k+ 1,
β and λ.

2.2 Moments

We define and compute

A(a1, a2, a3;β, λ) =

∫ ∞
0

xa1 (1 + xβ) e−a2 xβ
[
1− (1 +

λ

1 + λ
xβ)e−λx

β

]a3

dx,

where a1 > −1, a2 > 0 and a3 ∈ R.



Chilean Journal of Statistics 73

Using the generalized binomial expansion, one can obtain

A(a1, a2, a3;β, λ) =

∞∑
l1=0

l1∑
l2=0

l2+1∑
l3=0

(
a3

l1

)(
l1
l2

)(
l2 + 1

l3

)
(−1)l1λl2 Γ(a1+1

β + l3)

β (λ+ 1)l1 (λ l1 + a2)
a1+1

β
+l3

.

Next, the m-th moment of the OLL-PL distribution will be

E [Xm] =
β λ2

1 + λ

∞∑
k=0

(k + 1) ck+1A(m+ β − 1, λ, k;β, λ).

For integer values of m, let µ′m = E(Xm) and µ = µ′1 = E(X), then one can also find
the m-th central moment of the OLL-PL distribution through the following well-known
equation

µm = E(X − µ)m =

m∑
r=0

(
m

r

)
µ′r(−µ)m−r. (7)

Using (7), the variance, skewness and kurtosis measures can be obtained from the following
relations:

Var(X) = E(X2)− [E(X)]2,

Skewness(X) =
E(X3)− 3E(X)E(X2) + 2[E(X)]3

[V ar(X)]
3

2

,

Kurtosis(X) =
E(X4)− 4E(X)E(X3) + 6E(X2)[E(X)]2 − 3[E(X)]4

[V ar(X)]2
.

Figure 3 shows the behavior of the skewness and kurtosis of the OLL-PL distribution
with respect to α and λ when β = 2.
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Figure 3. Skewness (left) and kurtosis (right) plots when β = 2.

Next, we define and compute

B(a1, a2, a3, y;β, λ) =

∫ y

0
xa1 (1 + xβ) e−a2 xβ

[
1− (1 +

λ

1 + λ
xβ)e−λx

β

]a3

dx,
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where a1 > −1, a2 > 0 and a3 ∈ R.

Using generalized binomial expansion, one can obtain

B(a1, a2, a3, y;β, λ) =

∞∑
l1=0

l1∑
l2=0

l2+1∑
l3=0

(
a3

l1

)(
l1
l2

)(
l2 + 1

l3

)
(−1)l1λl2 γ(a1+1

β + l3, (λ l1 + a2) yβ)

β (λ+ 1)l1 (λ l1 + a2)
a1+1

β
+l3

,

where γ(λ, z) =
∫ z

0 t
λ−1 e−t dt denotes the incomplete gamma function.

Now, the r-th incomplete moment of the OLL-PL distribution is found to be

mr(y) =

∫ y

0
xr f(x)dx =

λ2 β

1 + λ

∞∑
k=0

(k + 1) ck+1B(r + β − 1, λ, k, y;β, λ).

2.3 Stochastic ordering

Let X and Y be two random variables. X is said to be stochastically less than or equal to
Y, denoted by X 6

st
Y if P (X > x) ≤ P (Y > x) for all x in the support set of X.

Theorem 2.1 Suppose X ∼ OLL-PL(α1, β1, λ) and Y ∼ OLL-PL(α2, β2, λ). If α1 < α2,
β1 < β2, then X 6

st
Y .

Proof Straightforward and hence omitted.

2.4 Quantile Function

Quantile functions are in widespread use in statistics and often find representations in terms
of lookup tables for key percentiles. Let X ∼ OLL-PL(α, β, λ). The quantile function of
X, say Q(p), is defined by F (Q(p)) = p and is the root of the following equation

(1 + λ+ λQ(p)β) e−λQ(p)β =
(1 + λ) (1− p)

1

α

p
1

α + (1− p)
1

α

, (8)

for 0 < p < 1. Inserting Z(p) = −1− λ− λQ(p)β, into (8), we have

Z(p) eZ(p) =
−(1 + λ) (1− p)

1

α e−1−λ

p
1

α + (1− p)
1

α

.

Hence, the solution of Z(p) is

Z(p) = W−1

[
−(1 + λ) (1− p)

1

α e−1−λ

p
1

α + (1− p)
1

α

]
,

where W−1[.] is the negative branch of the Lambert W function (Corless et al. 1996). Thus,
we obtain the quantile function as

Q(p) =

{
−1− 1

λ
− 1

λ
W−1

[
−(1 + λ) (1− p)

1

α e−1−λ

p
1

α + (1− p)
1

α

]} 1

β

. (9)
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The particular case of (9) for α = β = 1 has been derived recently by Jodrá (2010).

Here, we also propose three different algorithms for generating random data from the
OLL-PL distribution. The first algorithm is based on generating random data from the
Lindley distribution using the exponential-gamma mixture (see Ghitany et al., 2008).

• Algorithm 1 (Mixture Form of the Lindley Distribution)

(1) Generate Ui ∼ Uniform(0, 1), i = 1, · · · , n;
(2) Generate Vi ∼ Exponential(λ), i = 1, · · · , n;
(3) Generate Wi ∼ Gamma(2, λ), i = 1, · · · , n;

(4) If U
1
α
i

U
1
α
i +(1−Ui)

1
α

≤ λ
1+λ set Xi = V

1

β

i , otherwise, set Xi = W
1

β

i , i = 1, · · · , n.

The second algorithm is based on generating random data using the Weibull-generalized
gamma (GG) mixture (see Ghitany et al., 2013).

• Algorithm 2 (Mixture Form of the power Lindley Distribution)

(1) Generate Ui ∼ Uniform(0, 1), i = 1, · · · , n;
(2) Generate Yi ∼Weibull(β, λ), i = 1, · · · , n;
(3) Generate Zi ∼ GG(2, β, λ), i = 1, · · · , n;

(4) If U
1
α
i

U
1
α
i +(1−Ui)

1
α

≤ λ
1+λ set Xi = Yi, otherwise, set Xi = Zi, i = 1, · · · , n.

The third algorithm is based on generating random data from the inverse cdf in (2) of the
OLL-PL distribution, see (9).

• Algorithm 3 (Inverse cdf)

(1) Generate Ui ∼ Uniform(0, 1), i = 1, · · · , n;
(2) Set

Xi =

{
−1− 1

λ
− 1

λ
W−1

[
−(1 + λ) (1− Ui)

1

α e−1−λ

U
1

α

i + (1− Ui)
1

α

]} 1

β

, i = 1, · · · , n.

Algorithm 1 is the simplest data generation algorithm and therefore is preferable. Data
generation from the classical distributions like uniform, exponential and gamma distribu-
tions is included normally in many statistical software. We have used Algorithm 1 in our
simulation study, see Subsection 3.1. Algorithm 3 involves the Lambert W function and
therefore is somehow complicated, see Corless et al. (1996) for more details regarding the
Lambert W function.

2.5 Asymptotic properties

Let X ∼ OLL-PL(α, β, λ), then the asymptotics of equations (2), (3) and (4) as x→ 0 are
given by

F (x) ∼ (λxβ)α as x→ 0,

f(x) ∼ αβ λα xαβ−1 as x→ 0,

h(x) ∼ αβ λα xαβ−1 as x→ 0.

The asymptotics of equations (2), (3) and (4) as x→∞ are given by
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1− F (x) ∼ (
λ

1 + λ
)α xαβ e−αλx

β

as x→∞,

f(x) ∼ αλβ(
λ

1 + λ
)α xβ(α+1)−1 e−αλx

β

as x→∞,

h(x) ∼ αβλxβ−1 as x→∞.

These equations show the effect of parameters on the tails of the OLL-PL distribution.

2.6 Extreme values

Let X1, . . . , Xn be a random sample from (3) and X̄ = (X1 + · · · + Xn)/n denote
the sample mean, then by the usual central limit theorem, the distribution of

√
n(X̄ −

E(X))/
√
V ar(X) approaches the standard normal distribution as n → ∞. Sometimes

one would be interested in the asymptotics of the extreme values Mn = max(X1, . . . , Xn)
and mn = min(X1, . . . , Xn). For (2), it can be seen that

lim
t→0

F (t x)

F (t)
= xαβ,

and

lim
t→∞

1− F (t x)

1− F (t)
= e−αλx

β

.

Thus, it follows from Theorem 1.6.2 in Leadbetter et al. (1983) that there must be nor-
malizing constants an > 0, bn, cn > 0 and dn such that

Pr [an(Mn − bn) ≤ x]→ e−e−λαxβ

,

and

Pr [an(mn − bn) ≤ x]→ 1− e−x
αβ

,

as n → ∞. Using Corollary 1.6.3 of Leadbetter et al. (1983), we can obtain the form of
normalizing constants an, bn, cn and dn.

2.7 Order statistics

Order statistics make their appearance in many areas of statistical theory and practice.
Suppose that X1, . . . , Xn are a random sample from an OLL-PL distribution. Let Xi:n

denote the i-th order statistic. The pdf of Xi:n can be expressed as (see Arnold et al.,
1992)

fi:n(x) = K f(x)F i−1(x) {1− F (x)}n−i = K

n−i∑
j=0

(−1)j
(
n− i
j

)
f(x)F (x)j+i−1,

where K = n!
(i−1)! (n−i)! .
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We use the result 0.314 of Gradshteyn and Ryzhik (2000) for a power series raised to a
positive integer n (for n ≥ 1) ( ∞∑

i=0

ai u
i

)n
=

∞∑
i=0

dn,i u
i,

where the coefficients dn,i (for i = 1, 2, . . .) are determined from the recurrence equation
(with dn,0 = an0 )

dn,i = (i a0)−1
i∑

m=1

[m(n+ 1)− i] am dn,i−m.

We can demonstrate that the density function of the i-th order statistic of an OLL-PL
distribution can be expressed as

fi:n(x) =

∞∑
r,k=0

n−i∑
j=0

m∗r,k,j fEPL(x; r + k + i+ j, β, λ), (10)

where fEPL(x;α, β, λ) denotes the density function of EPL distribution with parameters
α, β and λ and the coefficients m∗r,k,j ≡ m∗r,k,j(i, n)’s are given by

m∗r,k,j =
n! (r + 1) cr+1 (−1)j a∗j+i−1,k

(i− 1)! (n− i− j)! j! (r + k + i+ j)
,

in which the coefficients cr’s are defined in Subsection 2.1 and the quantities a∗j+i−1,k can

be determined such that a∗j+i−1,0 = cj+i−1
1 and for k ≥ 1

a∗j+i−1,k = (k c1)−1
k∑
q=1

[q (j + i)− k] cq+1 a
∗
j+i−1,k−q.

Equation (10) is the main result of this section. It reveals that the pdf of the OLL-PL
order statistic is a linear combination of EPL distributions. So, several mathematical quan-
tities of these order statistics like ordinary and incomplete moments, factorial moments,
moment generating function, mean deviations and others can be derived using this result.

3. Estimation

In this section, we discuss maximum likelihood estimation (MLE) and inference for the
OLL-PL distribution. Let x1, . . . , xn be a random sample from OLL-PL model where α, β
and λ are the unknown parameters. The log-likelihood for the parameters of the OLL-PL
distribution given the data set x1, . . . , xn reduces to

ln = n log

(
αβ λ2

1 + λ

)
+ (β − 1)

n∑
i=1

log(xi) +

n∑
i=1

log(1 + xβi )− λ
n∑
i=1

xβi

+ (α− 1)

n∑
i=1

log [ti(1− ti)]− 2

n∑
i=1

log [tαi + (1− ti)α] , (11)
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where ti = 1−
(

1 + λ
1+λ x

β
i

)
e−λx

β
i .

The associated nonlinear log-likelihood system ∂ln
∂h = 0, (for h = α, β, λ), follows as

∂ln
∂α

=
n

α
+

n∑
i=1

log [ti(1− ti)]− 2

n∑
i=1

tαi log(ti) + (1− ti)α log(1− ti)
tαi + (1− ti)α

,

∂ln
∂β

=
n

β
+

n∑
i=1

log(xi) +

n∑
i=1

xβi log(xi)

1 + xβi
− λ

n∑
i=1

xβi log(xi)

+(α− 1)

n∑
i=1

t
(β)
i

ti
+ (1− α)

n∑
i=1

t
(β)
i

1− ti
− 2α

n∑
i=1

t
(β)
i

tα−1
i − (1− ti)α−1

tαi + (1− ti)α
,

∂ln
∂λ

=
2n

λ
− n

1 + λ
−

n∑
i=1

xβi + (α− 1)

n∑
i=1

t
(λ)
i

ti
+ (1− α)

n∑
i=1

t
(λ)
i

1− ti

−2α

n∑
i=1

t
(λ)
i

tα−1
i − (1− ti)α−1

tαi + (1− ti)α
,

where

t
(β)
i =

λ2

1 + λ
xβi (1 + xβi )e−λx

β
i log(xi),

t
(λ)
i =

−xβi e−λx
β
i

(1 + λ)2
+ xβi

(
1 +

λ

1 + λ
xβi
)
e−λx

β
i .

For estimating the model parameters, numerical iterative techniques should be used to
solve these equations. We can investigate the global maxima of the log-likelihood by setting
different starting values for the parameters. The information matrix will be required for
interval estimation. Let θ = (α, β, λ)T , then the asymptotic distribution of

√
n(θ̂ − θ)

is N3(0,K(θ)−1), under standard regularity conditions (see Lehmann and Casella, 1998,
pp. 461-463), where K(θ) is the expected information matrix. The asymptotic behavior
remains valid if K(θ) is superseded by the observed information matrix multiplied by 1

n ,

say 1
nI(θ), approximated by θ̂, i.e. 1

nI(θ̂). We have

I(θ) = −

 Iαα Iαβ IαλIβα Iββ Iβλ
Iλα Iλβ Iλλ

 ,
where

Iαα =
∂2ln
∂α2

=
−n
α2
− 2

n∑
i=1

tαi (1− ti)α log(ti) log( ti
1−ti ) + tαi (1− ti)α log(1− ti) log(1−ti

ti
)

[tαi + (1− ti)α]2
,

Iαβ = Iβα =
∂2ln
∂α∂β

=

n∑
i=1

t
(β)
i

ti
−

n∑
i=1

t
(β)
i

1− ti
− 2

n∑
i=1

t
(β)
i

tα−1
i − (1− ti)α−1

tαi + (1− ti)α

− 2α

n∑
i=1

t
(β)
i tα−1

i (1− ti)α−1 log( ti
1−ti )

[tαi + (1− ti)α]2
,
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Iαλ = Iλα =
∂2ln
∂α∂λ

=

n∑
i=1

t
(λ)
i

ti
−

n∑
i=1

t
(λ)
i

1− ti
− 2

n∑
i=1

t
(λ)
i

tα−1
i − (1− ti)α−1

tαi + (1− ti)α

− 2α

n∑
i=1

t
(λ)
i

tα−1
i log(ti)− (1− ti)α−1 log(1− ti)

tαi + (1− ti)α

+ 2α

n∑
i=1

t
(λ)
i

[tαi log(ti) + (1− ti)α log(1− ti)]
[
tα−1
i − (1− ti)α−1

]
[tαi + (1− ti)α]2

,

Iββ =
∂2ln
∂β2

=
−n
β2

+

n∑
i=1

xβi

(
log(xi)

1 + xβi

)2

− λ
n∑
i=1

xβi [log(xi)]
2 + (α− 1)

n∑
i=1

t
(ββ)
i ti −

[
t
(β)
i

]2

t2i

+ (1− α)

n∑
i=1

t
(ββ)
i (1− ti) +

[
t
(β)
i

]2

(1− ti)2
− 2α

n∑
i=1

t
(ββ)
i

tα−1
i − (1− ti)α−1

tαi + (1− ti)α

− 2α(α− 1)

n∑
i=1

[
t
(β)
i

]2 tα−2
i + (1− ti)α−2

tαi + (1− ti)α
+ 2α2

n∑
i=1

{
t
(β)
i

tα−1
i − (1− ti)α−1

tαi + (1− ti)α

}2

,

Iβλ = Iλβ =
∂2ln
∂β∂λ

= −
n∑
i=1

xβi log(xi) + (α− 1)

n∑
i=1

t
(βλ)
i ti − t(β)

i t
(λ)
i

t2i

+ (1− α)

n∑
i=1

t
(βλ)
i (1− ti) + t

(β)
i t

(λ)
i

(1− ti)2
− 2α

n∑
i=1

t
(βλ)
i

tα−1
i − (1− ti)α−1

tαi + (1− ti)α

− 2α(α− 1)

n∑
i=1

t
(β)
i t

(λ)
i

tα−2
i + (1− ti)α−2

tαi + (1− ti)α
+ 2α2

n∑
i=1

t
(β)
i t

(λ)
i

{
tα−1
i − (1− ti)α−1

tαi + (1− ti)α

}2

,

Iλλ =
∂2ln
∂λ2

=
−2n

λ2
+

n

(1 + λ)2
+ (α− 1)

n∑
i=1

t
(λλ)
i ti −

[
t
(λ)
i

]2

t2i

+ (1− α)

n∑
i=1

t
(λλ)
i (1− ti) +

[
t
(λ)
i

]2

(1− ti)2
− 2α

n∑
i=1

t
(λλ)
i

tα−1
i − (1− ti)α−1

tαi + (1− ti)α

− 2α(α− 1)

n∑
i=1

[
t
(λ)
i

]2 tα−2
i + (1− ti)α−2

tαi + (1− ti)α
+ 2α2

n∑
i=1

{
t
(λ)
i

tα−1
i − (1− ti)α−1

tαi + (1− ti)α

}2

,

in which

t
(ββ)
i =

λ2

1 + λ
xβi e−λx

β
i [log(xi)]

2
[
1 + (2− λ)xβi − λx

2β
i

]
,

t
(βλ)
i =

−λxβi
(1 + λ)2

e−λx
β
i log(xi)(1 + xβi )[λxβi (1 + λ)− λ− 2],

t
(λλ)
i =

2xβi e−λx
β
i

(1 + λ)3
+

2x2β
i e−λx

β
i

(1 + λ)2
− x2β

i (1 +
λ

1 + λ
xβi )e−λx

β
i .
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3.1 A simulation study

In order to assess the performance of the maximum likelihood method, a small simulation
study is performed using the statistical software R. However, one can also perform in SAS
by PROC NLMIXED procedure. The number of Monte Carlo replications was 30,000. For
maximizing the log-likelihood function, one can use the MaxBFGS subroutine with ana-
lytical derivatives. The evaluation of the estimates was performed based on the following
quantities for each sample size: the empirical mean squared errors (MSEs) are calculated
using the R package from the Monte Carlo replications. The maximum likelihood (ML)

estimates are determined for each simulated data, say, (α̂i, β̂i, λ̂i) for i = 1, 2, · · · , 30, 000
and the biases and MSEs are computed by

biash(n) =
1

30000

30000∑
i=1

(ĥi − h),

and

MSEh(n) =
1

30000

30000∑
i=1

(ĥi − h)2,

for h = α, β, λ. We consider the sample sizes at n = 100, 300 and 500 and consider
different values for the parameters. The empirical results are given in Table 1, and indicate
that the estimates are quite stable and, more importantly, are close to the true values
for these sample sizes. Furthermore, as the sample size increases, the MSEs decreases as
expected.

Table 1. The biases and MSEs of the estimates under the maximum likelihood method.

Sample Size Actual Value Bias MSE

n α β λ α̂ β̂ λ̂ α̂ β̂ λ̂
100 0.5 0.5 2 −0.1128 −0.0823 0.0386 0.0518 0.0460 0.0538

0.5 0.5 3 −0.1319 0.0948 −0.1158 0.0180 0.0426 0.0978
0.7 0.8 4 0.1281 −0.1231 −0.1734 0.0154 0.1207 0.1065
0.9 0.7 6 0.1883 0.0937 −0.1019 0.0481 0.0222 0.0442
1 1.5 0.9 0.1780 −0.0672 −0.0762 0.1372 0.0282 0.0917

1.5 2 0.6 −0.0841 −0.1342 −0.1017 0.1273 0.0183 0.0737
300 0.5 0.5 2 .0717 0.0617 0.0361 0.0216 0.0230 0.0248

0.5 0.5 3 0.1124 0.0853 0.0843 0.0084 0.0229 0.0457
0.7 0.8 4 0.0838 0.1137 0.0505 0.0065 0.0591 0.0441
0.9 0.7 6 0.1375 −0.0493 0.0811 0.0181 0.0105 0.0203
1 1.5 0.9 0.1258 0.0563 0.0636 0.0646 0.0131 0.0281

1.5 2 0.6 0.0343 0.0928 0.0429 0.1127 0.0089 0.0367
500 0.5 0.5 2 −0.0461 −0.0289 −0.0324 0.0094 0.0114 0.0111

0.5 0.5 3 −0.0512 −0.1110 −0.0355 0.0041 0.0102 0.0229
0.7 0.8 4 −0.0730 −0.0527 0.0467 0.0039 0.0315 0.0241
0.9 0.7 6 −0.1023 −0.0208 −0.0786 0.0086 0.0053 0.0102
1 1.5 0.9 −0.0783 −0.0425 −0.0169 0.0270 0.0071 0.0123

1.5 2 0.6 0.0077 −0.0691 0.0326 0.0943 0.0040 0.0149
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4. Application

In this section, we illustrate the power of OLL-PL distribution using two real data sets.
The first data set, denoted as D1, refers to remission times in months of a random sample
of 128 bladder cancer patients reported in Lee and Wang (2003).

The second data set, referred as D2, includes the breaking times (in hours) for 76 Kevlar
49/epoxy strands that were subject to a stress of 373.9 ksi and a temperature of 110◦C.
The data were taken from Gómez et al. (2014) and they were previously reported by Glaser
(1983).

For the purpose of comparison, we fitted the following models as well as the OLL-PL
distribution to the above two data sets: (i) the Lindley distribution, (ii) the power Lindley
(PL) distribution, (iii) the OLL-Lindley distribution, (iv) the EPL distribution, (v) the
beta Lindley (BL) distribution whose pdf is given by (see Merovci and Sharma, 2014)

fBL(x) =
1

B(α, β)
[FL(x)]α−1[1− FL(x)]β−1fL(x), x > 0, α, β, λ > 0,

where fL(·) and FL(·) are the pdf and cdf of the Lindley distribution with parameter λ,
respectively and B(a, b) is the complete beta function. and (vi) the generalized Lindley
(GL) distribution, Nadarajah et al. (2011), a sub-model of beta Lindley distribution which
will be obtained by setting β = 1.
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Figure 4. Histograms and the fitted pdfs for D1 and D2 (left plots for sub-models and right plots for the others).

We applied formal goodness-of-fit tests to determining which model fits the data best.
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To this end, we considered the Cramér-von Mises (W ∗) and Anderson-Darling (A∗) test
statistics, see Chen and Balakrishnan (1995) for details regarding these statistics. Generally
speaking, the smaller the values of A∗ and W ∗, the better the fit to the data. We have
also considered the Kolmogorov-Smirnov (K-S) statistic and its corresponding p-value
and the minimum value of the minus log-likelihood function (-Log(L)) for the sake of
comparison. The ML estimates of the parameters (standard errors in parentheses) as well
as the goodness-of-fit test statistics for the two real data sets are presented in Table 2.

Table 2. Parameter ML estimates (standard errors in the parentheses) and the goodness-of-fit test statistics.

Results for D1

Model α β λ -log(L) W ∗ A∗ K-S p-value
OLL-PL(α, β, λ) 2.5347 0.4064 0.60534 409.4333 0.0157 0.1010 0.0316 0.9995

(1.295554) (0.18406) (0.17609)

Lindley(λ) 1 1 0.1960 419.5299 0.1717 1.0257 0.1164 0.0623
(0.012336)

PL(β, λ) 1 0.8302 0.29433 413.3538 0.1177 0.7031 0.0682 0.5905
(0.047185) (0.03701)

OLL-L(α, λ) 0.836265 1 0.2032 416.6386 0.1971 1.1770 0.1002 0.1529
(0.06481) (0.014994)

EPL(α, β, λ) 2.76836 0.5663 0.8191 410.4335 0.0392 0.2568 0.0429 0.9726
(1.290184) (0.101697) (0.311619)

GL(α, λ) 0.73363 1 0.16487 416.2859 0.19205 1.1472 0.0928 0.2204
(0.09117) (0.016635)

BL(α, β, λ) 1.34058 0.0651 1.8616 412.8024 0.09997 0.6059 0.07136 0.5322
(0.431508) (0.056445) (1.465743)

Results for D2

Model α β λ -log(L) W ∗ A∗ K-S p-value
OLL-PL(α, β, λ) 1.7633 0.7426 0.8471 120.8371 0.0773 0.4548 0.0818 0.6582

(0.70885) (0.26366) (0.105536)

Lindley(λ) 1 1 0.7948 123.6751 0.1173 0.6907 0.1156 0.2423
(0.067879)

PL(β, λ) 1 1.1424 0.7047 122.4001 0.1289 0.7568 0.1123 0.2723
(0.090806) (0.081917)

OLL-L(α, λ) 1.2592 1 0.75064 121.3641 0.0964 0.5699 0.0965 0.4507
(0.127996) (0.055503)

EPL(α, β, λ) 1.5372 0.9497 1.0213 121.8663 0.1094 0.6469 0.0992 0.4156
(0.666) (0.1937) (0.3596)

GL(α, λ) 1.3903 1 0.93626 121.8991 0.11175 0.6594 0.1022 0.3795
(0.23753) (0.104684)

BL(α, β, λ) 1.45537 0.7265 1.1942 121.8674 0.1097 0.6484 0.0998 0.4087
(0.355) (0.835) (1.056)

As we can see from Table 2, the smallest values of -Log(L), W ∗, A∗ and K-S statistics
and the largest p-values belong to the OLL-PL distribution for both data sets. Therefore
the OLL-PL distribution outperforms the other competitive considered distribution in the
sense of these criteria.

For the first data set, the EPL distribution provides the second best fit and for the
second data set, the OLL-L distribution provides the second best fit. These conclusions
can also be drawn visually from Figures 4-6. Figures 5 and 6 reveal that the plotted points
for the OLL-PL distribution best capture the diagonal line in the probability plots. Hence,
the OLL-PL distribution could, in principle, be an appropriate model for fitting these data
sets.
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Figure 5. Probability plots for D1.

5. Concluding Remarks

In this paper, we introduce a new three-parameter distribution, so-called the odd log-
logistic power Lindley (OLL-PL) distribution, that extends the generalized log logistic
family of distributions by mixing with the Lindley distribution proposed by Lindley (1958).
Several of its structural properties are discussed in detail. These include shape of the
probability density function, hazard rate function and its shape, quantile function, limiting
distributions of order statistics, and the general r-th moments. Moreover, the maximum
likelihood estimation procedure is discussed for estimating the parameters. As can be
seen from the shapes of the probability density and hazard functions, the new distribution
provides more flexibility than other distributions that are commonly used for fitting lifetime
data. A simulation study is also provided. Finally, two real-data examples are analyzed to
show the applicability of the new distribution in practical situations. All the computations
are performed using Maple 17 and R (R Core Team, 2016 and Marinho et al., 2013).

It is worthwhile to mention that other attractive properties of the new distribution are
not considered in this paper, such as the reliability parameter, cumulants, cumulative
residual entropy, distribution of the sum, product, difference & ratio of OLL-PL random
variables, and bivariate & multivariate generalizations of the OLL-PL distribution, etc.
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Figure 6. Probability plots for D2.

In an ongoing project, we plan to address some of these properties listed above. Bayesian
estimates of the parameters are currently under investigation and will be reported else-
where. Additionally, there are some open questions which we will try to address in future
research:

• Is it possible to have characterizations of such families of distributions via order statis-
tics?

• For the bivariate extension of the OLL-PL distribution and subsequently the multivariate
extension, can we consider copula-based construction approach? If yes, then, what can
we say regarding the dependence structure of the associated copula model(s)?

• Is it reasonable to consider the discrete analog of the continuous OLL-PL distribution?
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