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Abstract

Recently, the two-parameter weighted Lindley distribution was proposed as a general-
ization for the one-parameter Lindley distribution. The proposed new distribution has
an additional parameter leading to a more general form for the failure rate function.
With appropriate choice of the parameter values, it is possible to model two aging classes
of life distributions including bathtub and increasing hazard rates. It thus provides an
alternative to many existing life distributions to modeling bathtub hazard rate. In this
paper, based on a larger simulation experiment, we study the Type I error rate and
power for the likelihood ratio, Wald, modified Wald, Score and Gradient tests used to
distinguish the two-parameter weighted Lindley distribution from basic Lindley. With
respect to size, under scenarios considered, the simulation study reveals that the likeli-
hood ratio test performs better than the other ones. With respect to power, the Score
test is found to perform better than the others.
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Mathematics Subject Classification: Primary 62-XX · Secondary 62Nxx.

1. Introduction

After Ghitany et al. (2008b), the one-parameter Lindley distribution has been generalized
by several authors to increase its flexibility in the survival analysis data. One of these gen-
eralizations is the weighted Lindley which has as particular case the one-parameter Lindley
distribution. According to Ghitany et al. (2011), a continuous and non-negative random
variable T follows a two-parameter weighted Lindley distribution with shape parameters
µ and β, both positive, if its probability density function is given by:

f(t | µ, β) =
µβ+1

(µ+ β)Γ(β)
tβ−1(1 + t)e−µt, (1)
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where Γ(β) =
∫∞

0 tβ−1e−tdt is the complete gamma function. From (1) we have the corre-
sponding survival and hazard rate functions written, respectively, as:

S (t | µ, β) =
(µ+ β) Γ (β, µt) + (µt)β e−µt

(µ+ β) Γ (β)
, (2)

and

h (t | µ, β) =
µβ+1tβ−1 (1 + t) e−µt

(µ+ β) Γ (β, µt) + (µt)β e−µt
, (3)

where Γ (β, µt) is the upper incomplete Gamma function defined as
∫∞
µt t

β−1e−tdt (Olver

et al., 2010).
For β = 1 in (1) we have the one-parameter Lindley probability density function as a

particular case. The one-parameter Lindley distribution was introduced by Lindley (1965,
1958) as a distribution which can be useful to analyze lifetime data, especially in applica-
tions modeling stress-strength reliability. Ghitany et al. (2008b) studied the properties of
the one-parameter Lindley distribution under a careful mathematical treatment. They also
showed, in a numerical example, that the Lindley distribution presents better modeling
than the one obtained by using the Exponential distribution. A generalized Lindley dis-
tribution, which includes as special cases the Exponential and Gamma distributions was
proposed by Zakerzadeh and Dolati (2009). Ghitany and Al-Mutari (2008) considered a
size-biased Poisson-Lindley distribution and Sankaran (1970) proposed the Poisson-Lindley
distribution to model count data. Some properties of Poisson-Lindley distribution and its
derived distributions were considered by Borah and Begum (2002). Borah and Deka Nath
(2001a) considered the Poisson-Lindley and some of its mixture distributions. The zero-
truncated Poisson-Lindley distribution and the generalized Poisson-Lindley distribution
were considered by Ghitany et al. (2008a) and Mahmoudi and Zakerzadeh (2010), re-
spectively. A study on the inflated Poisson-Lindley distribution was presented by Borah
and Deka Nath (2001b) and Zamani and Ismail (2010) considered the negative binomial-
Lindley distribution. The extended Lindley distribution was introduced by Bakouch et al.
(2012) while Nadarajah et al. (2011) introduced the exponentiated Lindley distribution.
The one-parameter Lindley distribution in the competing risks scenario was considered by
Mazucheli and Achcar (2011). Several other generalizations can be found in the LindleyR
R library (Mazucheli et al., 2016).

One nice feature of the two-parameter weighted Lindley distribution is that its hazard
rate function is, for all µ > 0, bathtub shaped for 0 < β < 1 and it increases for β ≥ 1. Fig-
ure 1 shows the hazard rate function for the two-parameter weighted Lindley distribution
for some different parameter values.

Since the standard one-parameter Lindley distribution does not provide enough flex-
ibility to analyze different types of lifetime data, the two-parameter weighted Lindley
distribution can be a good alternative lifetime distribution. The one-parameter Lindley
distribution accommodates only increasing hazard rate (Ghitany et al., 2008b).

In the last years, several distributions have been proposed to model bathtub hazard rate
behavior but in general these distributions have at least three parameters. Models with
three or more parameters, considering limited amount of data may provide inaccurate esti-
mates, so it is important to consider alternative models with small number of parameters.
In addition to the weighted Lindley distribution, that can be used to model bathtub-
shaped failure rate, three other distributions are also specified with two-parameters and
are presented in Chen (2000), Haupt and Schäbe (1992) and in Smith and Bain (1975).
A comprehensive review of the existing know distributions that exhibit bathtub shape is
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Figure 1. Behavior of the hazard rate function of weighted Lindley distribution.

provided by Rajarshi and Rajarshi (1988), Lai et al. (2001), Bebbington et al. (2007) and
Nadarajah (2008).

In this paper it is conducted Monte Carlo simulation studies in order to evaluate the
Type I error rate and power when the interest lies in discriminating the weighted Lind-
ley distribution from the one-parameter Lindley distribution. The paper is organized as
follows: Section 2 presents the likelihood function. The likelihood ratio test, Wald test,
modified Wald test, Score test and Gradient test are presented in Section 3. Section 4
presents the specifications of the Monte Carlo simulation as well as the results obtained.
Two applications are provided in Section 5. Final remarks in Section 6 ends up the paper.

2. The Likelihood Function

Let t = (t1, . . . , tn) be a realization of the random sample T = (T1, . . . , Tn), where
T1, . . . , Tn are i.i.d. random variables according to the weighted Lindley distribution with
parameter vector θ = (µ, β), µ > 0 and β > 0. From (1) the likelihood function can be
written as:

L (θ | t) =

(
µβ+1

(µ+ β) Γ (β)

)n
e−µt0

n∏
i=1

tβ−1
i (1 + ti) , (4)

where t0 =
∑n

i=1 ti and Γ (β) is the complete gamma function. From (4) the log-likelihood
function for µ and β, l (θ | t), is:

l (θ | t) = n [(β + 1) log (µ)− log (µ+ β)− log Γ (β)]− µt0 + (β − 1) t1 + t2, (5)

where t1 =
∑n

i=1 log (ti) and t2 =
∑n

i=1 log (1 + ti).
Differentiating (5) with respect to µ and β we have the Score vector U θ =

[
Uµ Uβ

]
with

components:

Uµ = n

[
β + 1

µ
− 1

(µ+ β)

]
− t0, (6)
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and

Uβ = n

[
log (µ)− 1

(µ+ β)
− ψ (β)

]
+ t1, (7)

where Uµ = ∂
∂µ l (θ | t), Uβ = ∂

∂β l (θ | t) and ψ(β) = d log Γ(β)/dβ = Γ′(β)/Γ(β) represent
the digamma function.

To determine µ̂ and β̂ we solve simultaneous equations Uµ = 0 and Uβ = 0 in µ and β,
respectively. The equation Uµ = 0 can be solved algebraically for µ, giving:

µ̂(β) =
β(1− t) +

√
β2(1 + t)2 + 4βt

2t
, (8)

which is the maximum likelihood estimate of µ when β is assumed to be known, where
t = t0/n. The maximum likelihood estimate for β can be obtained solving (7) by Newton’s
method or its modifications setting µ = µ̂ (β).

The maximum likelihood estimator of θ can be considered as being approximately
multivariate normal with mean θ and a variance-covariance matrix that is the inverse
of the expected information matrix. From Ghitany et al. (2011) the elements of the

expected Fisher information are Iµµ = n
(
β+1
µ2 − 1

(µ+β)2

)
, Iµβ = −n

(
1
µ + 1

(µ+β)2

)
and

Iββ = n
(
ψ′(β)− 1

(µ+β)2

)
such that:

Iθ = n

 β+1
µ2 − 1

(µ+β)2 −
[

1
µ + 1

(µ+β)2

]
−
[

1
µ + 1

(µ+β)2

]
ψ′(β)− 1

(µ+β)2

 , (9)

where ψ′ (β) = d2

dβ2 log Γ (β).

The inverse of Iθ evaluated at µ̂ and β̂ provides the asymptotic variance-covariance
matrix of the maximum likelihood estimates. Since Iθ is data independent it is equal to
the observed information matrix.

3. Hypothesis Testing

Let us consider the two-parameter weighted Lindley distribution with the corresponding
log-likelihood function l (θ), Score vector Uθ and Fisher information matrix Iθ and sup-
pose the interest is to test H0 : β = 1 versus H1 : β 6= 1 by treating µ as a nuisance
parameter. In order to verify that the two-parameter weighted Lindley distribution is pre-
ferred, instead of the basic Lindley one, from which it is derived, we consider the following
statistics: the likelihood ratio (S1), the Wald-type (S2), the modified Wald-type (S3), the
Score (S4) and the Gradient (S5) statistics as describe bellow.

The likelihood ratio test needs to maximize both, the restricted, lR (µ, β = 1 | t), and

the unrestricted log-likelihood, lU (µ, β | t). Let l̃ = lR (µ̃, β = 1 | t) and l̂ = lU (µ̂, β̂ | t)
the maximized log-likelihoods under H0 and H1, respectively. From (8), µ̃ = µ̂(1) and

µ̂ = µ̂(β̂) and under H0 the statistic:

S1 = 2(l̂ − l̃),

is asymptotically distributed as chi-square distribution with one degree of freedom (Cox
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and Hinkley, 1974; Lehmann and Casella, 1998). From (5), the fitted restricted and unre-
stricted log-likelihood are, respectively:

l̃ = n [2 log (µ̃)− log (µ̃+ 1)]− µ̃ t0 + t2, (10)

and

l̂ = n[(β̂ + 1) log(µ̂)− log(µ̂+ β̂)− log Γ(β̂)]− µ̂ t0 + (β̂ − 1)t1 + t2. (11)

The Wald-type test is based on the maximum likelihood estimates for µ and β, so it
requires fitting just the unrestricted model. Since under the null hypothesis we have one
restriction, the Wald-type statistic is written as:

S2 =
(β̂ − 1)2

Î−1

β̂β̂

, (12)

where Î−1

β̂β̂
= var(β̂) is the element on 2nd row and 2nd column of the inverse matrix of

Iθ, given in (9), evaluated at µ̂ and β̂. If we consider the inverse matrix of Iθ evaluated
under H0, that is at µ̃ and β = 1 we have the modified Wald-type (S3) statistic, proposed
by Hayakawa and Puri (1985). Under H0, S2 and S3 are asymptotically distributed as a
chi-square distribution with one degree of freedom.

The Score test is obtained by evaluating Uβ and Iθ under the null hypothesis, that is
at µ̃ and β = 1. To test the hypothesis H0 : β = 1 versus H1 : β 6= 1 the Score statistic is
defined as:

S4 = U2
β̃
× Ĩ−1

β̃β̃
, (13)

where by (7) U
β̃

= n
[
log(µ̃)− 1

(µ̃+1) + ψ(1)
]

+ t1.

Such as the the likelihood ratio and the Wald-type statistics, under the null hypothesis,
the Score statistic is also asymptotically distributed as chi-squared distribution with one
degree of freedom. The Score test has an advantage over the likelihood ratio test and the
Wald test in that the Score test only requires that the parameter of interest be estimated
under the null hypothesis.

The Gradient test, recently proposed by Terrell (2002), shares the same first order
asymptotic properties with the likelihood ratio, Wald and Score statistics. The Gradient
statistic for testing H0 : β = 1 versus H1 : β 6= 1 is:

S5 = (β̂ − 1)× U
β̃
, (14)

and asymptotically, under H0 has a chi-square distribution with one degrees of freedom.
It is important to point out that these five tests are all asymptotically equivalent, but

they may differ in finite samples (Buse, 1982). In practice, when these tests are evaluated
numerically, they often lead to substantially different answers (Young and Smith, 2005).
Under several scenarios, the Type I error rate and the power of the tests are compared in
a simulation study in Section 4.
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4. Simulation Study

In this section the tests introduced in the last section are compared with respect to the
power and Type I error rate through a Monte Carlo study. For the power study the setup of
the Monte Carlo experiments is as follows: the sample size was fixed at n = 20, 30, 50 and
100. The null hypothesis H0 : β = 1 versus H1 : β 6= 1 was tested generating n observations
taking β = 0.1 to 2.0 by 0.01 and µ = 0.5, 1.0 and 1.5. To simulate observations from the
weighted Lindley distribution we have considered the procedure introduced in Ghitany et
al. (2011), available in LindleyR R library (Mazucheli et al., 2016), and given by:

(1) Generate u1, . . . , un from a Uniform(0, 1),
(2) if ui ≤ θ

θ+β generate xi from a Gamma(β, θ) else generate xi from a

Gamma(β + 1, θ), i = 1, . . . , n (β and θ are the shape and scale parameters).

For each combination of n, β and µ simulation runs for B = 100, 000 generated samples.
The empirical power of the tests were obtained by calculating the proportion of times that
Sj , j = 1, . . . , 5, were greater than the critical value C, C ∼= 3.84 (6.63) for nominal level
α = 0.05 (0.01).

All simulations were performed in Ox Console, version 6.20 (Doornik, 2007), using the
MaxBFGS function to obtain the maximum likelihood estimates for µ and β whenever
necessary. Below we describe the scheme used to estimate the Type I error rate. A similar
scheme can be used to estimate the power.

Let I = 50, E = 0.00001, β = 1, µ = (0.5, 1.0, 1.5), n = 10(by 10), . . . , 100, and
B = 100, 000.

for i = 1, . . . , length (µ) {
µ = µ [i]
for j = 1, . . . , length (n)
{

n = n [j]; set k = 1;
while k ≤ B
{

simulate (t1, . . . , tn) using (Ghitany et al., 2011)
estimate µ and β by the BFGS method
if (I ≤ 50 or E ≤ 0.00001) then output µ̂ and β̂ else return
k = k + 1

}
calculate S1, . . . , S5

calculate 1
B ×# (Si ≤ 0.05) and 1

B ×# (Si ≤ 0.01) for i = 1, . . . , 5
}}

The estimated power for the five tests under different scenarios and µ = 0.5 are shown
in Figure 2. For the others values of µ we have observed a similar power behavior and the
results are not shown.
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Figure 2. Estimated power (upper panels: nominal level = 5% and lower panels: nominal level = 1%) of the likelihood
ratio test (solid line), Wald test (dashed), modified Wald test (dotted line), Score test (dotdashed) and gradient test
(longdashed line).
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Table 1. Area under estimated power curve.

Statistical Tests
significance level: 5% significance level: 1%

µ n S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

0.5

20 0.7400 0.5966 0.8013 0.5889 0.7981 0.5019 0.4578 0.5221 0.4577 0.5634

30 0.8756 0.7407 0.9448 0.7350 0.9244 0.6169 0.5226 0.6853 0.5192 0.6790
50 1.0720 0.9727 1.1289 0.9699 1.1054 0.8083 0.6674 0.9005 0.6618 0.8661
100 1.3163 1.2767 1.3407 1.2761 1.3297 1.1145 1.0191 1.1694 1.0170 1.1457

1.0

20 0.6842 0.5598 0.7366 0.5456 0.7416 0.4617 0.4382 0.4617 0.4377 0.5148

30 0.8082 0.6836 0.8746 0.6706 0.8583 0.5626 0.4979 0.6099 0.4932 0.6178
50 0.9979 0.8920 1.0614 0.8839 1.0359 0.7322 0.6145 0.8216 0.6038 0.7902
100 1.2505 1.2001 1.2838 1.1977 1.2683 1.0276 0.9239 1.0945 0.9163 1.0639

1.5

20 0.7677 0.6165 0.8281 0.6127 0.8243 0.5222 0.4646 0.5473 0.4647 0.5857

30 0.9073 0.7707 0.9752 0.7685 0.9547 0.6428 0.5345 0.7161 0.5327 0.7069
50 1.1041 1.0101 1.1551 1.0094 1.1342 0.8432 0.6983 0.9322 0.6957 0.8987
100 1.3421 1.3084 1.3635 1.3083 1.3541 1.1518 1.0659 1.1998 1.0654 1.1797
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Figure 3. Estimated size of S1 : Likelihood ratio test, S2 : Wald test, S3 : Modified Wald test, S4 : Score test and
S5 : Gradient test.

Table 1 shows the area under estimated power curve calculated using the trapezoid rule
integration. The larger the area the greater the power of the tests. By this criterion, for
all n and µ considered, we have that the tests are ordered as: S3 > S5 > S1 > S2 > S4.
Figure 3 shows the estimated Type I error rate for the five tests, n = 10 to 100 by 1 and
µ = 1. We have observed similar Type I error rate for others values of µ and the Figure
3 indicate a difference in patterns behavior among these five tests. Here, also we have
considered B = 100, 000 generated samples.

5. Applications

In this section we fit the Lindley (L) and the weighted Lindley (WL) distribution to two real
data sets and show the results of the applications of S1, . . . , S5 hypothesis tests. The first
data set was extracted from Jose et al. (2010), which refers to remission times (in months)
of a random sample of 142 bladder cancer patients. The second data set was reported by
Bjerkedal (1960), and employed by Gupta et al. (1997) among others. It represents the
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survival times (in days) of 72 guinea pigs infected with virulent tubercle bacilli, regimen
4.3. The regimen number is the common log of the number of bacillary units in 0.5 ml of
challenge solution.

Table 2 list for both data sets and models (L) and (WL) the maximum likelihood es-
timates and their standard errors. The maximum likelihood estimates were obtained in
SAS/NLMIXED procedure (SAS, 2010), by applying the Newton-Raphson algorithm.
The results of the hypothesis testing are presented in Table 3 while the fitted survival
curves are displayed in Figure 4.

Table 2. Maximum likelihood (standard error) estimates for Lindley and weighted Lindley distribution.

Model Parameter Data Set 1 Data Set 2

L µ
0.2003

(0.0119)
0.0112

(0.0009)

WL
µ

0.1601
(0.0162)

0.0175
(0.0030)

β
0.6603

(0.1010)
2.1052

(0.4872)

Table 3. Hypothesis testing results.

Statistical Test
S1 S2 S3 S4 S5

data set 1
Value 7.0085 5.1465 5.0948 13.7210 8.3608

p-value 0.0038 0.0233 0.0240 0.0002 0.0038

data set 2
Value 8.4080 11.3172 11.1772 4.8680 7.3764

p-value 0.0037 0.0008 0.0008 0.0274 0.0066
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Figure 4. Plots of fitted Lindley (dotted line) and weighted Lindley (solid line) survival curves.

6. Concluding Remarks

In recent years, the Lindley distribution have been considered in several applications as an
alternative lifetime model. Its generalization, the weighted Lindley distribution, is another
alternative distribution to modeling lifetime data. In this sense, its important to have
hypothesis testing procedures for distinguishes between both distributions. In these paper
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we considered hypothesis testing procedures based on likelihoods and their Type I error
rate and power were studied by a large Monte Carlo study. The Monte Carlo study revealed
with respect to size that, when the sample size increases, the Type I error rate of the tests
approaches to the nominal level reasonably, but the likelihood ratio test performs better
than the other ones, with this approximation being more slowly for S5 test. With respect
to power, the Score test was found to perform better than the others for small sample
sizes. We fitted the weighted Lindley distribution to two real data sets and compared the
obtained results with the one-parameter Lindley distribution in which showed the great
potentialities of the WL distribution. The originality of this study comes from the fact
that there has been no previous work comparing all of these hypothesis tests.
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