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Abstract

Forest development involves a complex set of ecological processes, such as dispersal and
competition for light, which can generate a range of spatial patterns in forest structure
that change through time. One interesting avenue of research in ecology is exploring
whether spatial statistical methods can be brought to bear on such spatial patterns of
forest structure to gain insight into the possible ecological processes that created them.
In this study we applied a relatively new method to ecology, codispersion analysis,
to investigate spatial covariation between two common measures of forest structure:
tree abundance and mean basal area. We used data for four focal tree species from
both a simulated and a real forest sampled at multiple time points. We assessed the
significance of observed codispersion patterns using null models, in which tree diameters
were iteratively and randomly reassigned to trees whose locations were kept constant.
The results suggest that codispersion analysis could detect a range of spatial patterns
in forest stand structure that were indicative of changing ecological processes.
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1. Introduction

Forest development through time (“succession”) is the result of a complex interplay of
factors and processes (Oliver and Larson, 1996). Following a volcanic eruption, retreating
glacier, logging operation, major insect outbreak, or hurricane in the forest, an initial phase
of establishment of young trees at relatively high abundances ensues. The identity and or-
der of species establishment in these areas is in large part determined by the interaction
between the local environment, the mix of seeds dispersing into the opening, and intrinsic
characteristics of different tree species, such as their tolerance to the amount of available
light. For example, shade-intolerant species usually establish first and, once established,
competition among individuals for light typically results in a “self-thinning” effect (Yoda
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et al., 1963), whereby dominant individuals outcompete smaller, nearby conspecifics, caus-
ing a reduction in the numbers of trees over time and an increase in size of surviving trees.
As these stands mature, further competition among individuals of different species largely
guides the trajectory of succession: shade-intolerant species typically are replaced by more
shade-tolerant species. Overlain on these processes is the impact of stochastic events (e.g.,
insects, wind, fire), which can have profound effects on natural patterns of stand develop-
ment by causing localized areas of tree mortality that interrupt and reset the otherwise
directional succession (Uriarte et al., 2009). Thus, ecologists use quantitative methods to
identify direct and interactive effects of successional processes and a range of disturbances
that lead to observed forest structure.

One approach involves the use of spatial statistics to analyse spatial patterns of trees
(Fajardo and McIntire, 2007; Král et al., 2014). This approach recognizes that observed
spatial patterns may be non-random, and analysis of the pattern together with associated
characteristics (e.g., sizes, abundances) can reveal signatures of past ecological processes
and disturbances that have shaped a given forest (Getzin et al., 2006). For example,
spatial clustering of trees in a forest can arise from competitive effects, local dispersal
processes, or both (Lara-Romero et al., 2015). However, spatial analyses of forest stands
routinely have no temporal depth. One motivation for the work we describe here is to
explore whether applying spatial methods to forest data collected through time could
provide additional insights into forest dynamics (e.g., Detto and Muller-Landau, 2016;
Jańık et al., 2016).

Figure 1. Conceptual relationships between tree abundance and mean basal area (m2) within forests. Spatial
patterns between these two variables could manifest as local areas in a forest plot where there are: A. no trees
(or very few small ones); B. very few, large, dominant individuals; C. thickets of small, young trees; D. a mixture
of clusters of small and large trees. The spatial arrangement of these local scenarios of tree numbers and sizes in
a forest can result in relatively weak (lines 1 and 2), relatively strong (line 3), or negative abundance-basal area
relationships.

In this study, we examine temporal changes in the spatial “abundance-basal area” re-
lationship for four species in two forest areas. The abundance-basal area relationship is a
useful descriptor of forest structure at any given point in time, and may take different forms
(Figure 1) depending on the total number of trees in the plot, their spatial pattern, and the
spatial distribution of tree sizes. For example, a weak relationship may exist if the majority
of the area of a sampled plot contains few-to-no trees of a species but does have either
a few large, dominant individuals or abundant clumps of small-diameter trees scattered
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throughout the plot (lines 1 and 2 in Figure 1). The relationship also may be relatively
strong and positive when there is a mix of abundances and sizes distributed throughout
the forest (line 3 in Figure 1). In principle, the relationship also could be negative (line 4 in
Figure 1) if there is a strong spatial separation of a few, large trees and many juvenile trees
of a species interspersed throughout at forest. Spatio-temporal changes in the strength or
nature of the abundance-basal area relationship for a given species thus could suggest
the occurrence of particular successional processes. For example, we might expect that
self-thinning of a relatively homogeneous stand of juvenile trees would cause the spatial
relationship between basal area and abundance to weaken as abundance decreases while
the basal area of the remaining few dominant individuals increases.

We use codispersion analysis (e.g., Cuevas et al., 2013; Buckley et al., 2016a,b,c; Wang
et al., 2016) to quantify temporal changes in the spatial relationships between abundance
and basal area in two forest plots: one in which we simulated 200 years of forest succession
following the complete mortality of a dominant species resulting from a non-native insect;
and the other a real forest stand that has undergone more typical forest succession following
clearcut logging in the late 1890s and damage to part of the stand in 1938. Codispersion
analysis quantifies the strength, scale, and directionality (anisotropy) in the relationship
between two variables that have been measured spatially either at point locations or within
grid cells (Buckley et al., 2016a). We explore whether the spatial covariation in patterns
of tree abundances and basal areas, examined at a number of points in time, can provide
insights into successional trajectories and processes occurring in simulated and real forests.
Finally, we use spatial null models (Gotelli and Graves, 1996) to test for the significance
of the results and to help differentiate among possible ecological processes that underlie
the observed spatial patterns (Wiegand and Moloney, 2014).

2. Methods

2.1 A simulated forest

We used a spatially-explicit forest dynamics model, SORTIE (Pacala et al., 1993) to gen-
erate a 200-year forecast of potential spatial changes in forest structure and composition
for the 35-ha Harvard Forest long-term forest dynamics plot (Orwig et al., 2015, hereafter
“the Harvard Forest plot”), under a scenario of complete mortality of a dominant tree
species, eastern hemlock (Tsuga canadensis). For the species in this forest, two hundred
years is an adequate timeframe over which to expect significant spatio-temporal change as
a result of successional processes after a large disturbance. Hemlock is a foundation species
in many forests of eastern North America and is currently undergoing widespread decline
and mortality due to the impact of the hemlock woolly adelgid (Adelges tsugae), an insect
introduced from Asia that causes mortality of hemlock trees over a few to ten or more years
(Ellison et al., 2005). The SORTIE model simulates the fates of individual trees based on
parameterized equations that define seed dispersal, growth, and mortality of individual tree
species, intra- and interspecific competitive interactions, and species-specific responses to
various disturbances (Canham et al., 2006). We initialized our simulation using data from
the Harvard Forest plot, comprising Cartesian coordinate locations, species identities, and
diameters for all trees greater than 1 cm in diameter measured 1.3 m above the ground
(DBH: “diameter at breast height”). Starting from the 2014 measurement (Time = 0),
we simulated annually for 200 years the fates of four species: eastern white pine (Pinus
strobus henceforth “PIST”); red maple (Acer rubrum “ACRU”); black birch (Betula lenta
“BELE”); and red oak (Quercus rubra “QURU”). To simulate the impact of the hemlock
woolly adelgid, we implemented an “episodic disturbance” in SORTIE that caused the
removal of increasing proportions of hemlock in 10-year increments, between time steps 10
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and 50, after which time no hemlock trees remained. From this simulation, we extracted
for each of the four species their spatial locations and sizes (diameters), at each of six time
steps (times t = 0, 30, 60, 90, 150, and 200 years). Since our initial forest conditions were
fixed, stochasticity in our simulation derived from the fact that parameters for a number
of the model processes (e.g., dispersal, mortality, growth) are sampled from probability
distributions, leading to modest variations in outcomes of each new simulation. Here, the
outcome of one representative simulation is used for subsequent codispersion analysis.

Figure 2. a) An illustration of the creation of directional spatial lags for two ecological datasets (A and B), organized
as rasterized surfaces. The dashed lines represent different spatial lags h over which codispersion is calculated in
different directions. (b) The codispersion graph. The color of each cell is the value of the codispersion coefficient of
two variables for each given spatial lag h and direction in X −Y space. Here, the graph shows negative codispersion
between the two variables when computed in the east direction, but positive covariation when computed in the
northwest direction, indicating anisotropy in the way in which the two variables covary. The color pattern on the
graph also indicates that the two variables are most negatively correlated at spatial lags > 20m in the positive X
direction, and most positively correlated at scales of c. 20 − 30m in the negative X direction and at c. 50 − 80m in
the Y direction. Figures taken from Buckley et al. (2016c).

2.2 The Lyford

Our second dataset comprised forest data from the Lyford plot at the Harvard Forest (Fos-
ter et al., 1999), a 2.9-ha plot situated in a maturing oak-dominated forest. Approximately
10% of this forested plot was severely disturbed by a major hurricane in 1938, after which
the trees within the plot were measured and mapped on five occasions (1969, 1975, 1991,
2001, 2011). Since 1938, the Lyford plot has been undergoing typical forest succession and
biomass recovery in the disturbed areas (Eisen and Barker Plotkin, 2015). We extracted
spatial location and DBH data for the five measurement times and for the same four tree
species as were simulated with SORTIE for the Harvard Forest plot.

2.3 codispersion analysis

We applied codispersion analyses to the rasterized observed basal area and abundance for
the four focal species, for each of the six simulated time steps for the Harvard Forest plot
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dataset and the five time points at the Lyford Grid plot for which data were collected in
the field.

Codispersion analysis (Cuevas et al., 2013) quantifies the spatial covariation between
two spatial datasets that can be in the form of point-pattern data, irregularly-spaced plot
data, or data on a regular raster grid. For each of the four species, we used rasterized
datasets of mean basal area (calculated from the DBH measurements of individual trees)
and of tree abundance (total number of tree stems) computed within 20×20-m grid cells
for the Harvard Forest plot and 5×5-m grid cells for the smaller Lyford plot.

In brief, codispersion analysis involves the application of an Epanechnikov kernel function
(Cuevas et al., 2013) across all possible cell-to-cell distances for a set of spatial lags h =
{h1, h2} for each of input datasets A and B. The spatial lags comprise two vectors of
distances analysed by the kernel function: one vector of lags is oriented parallel to the
x-axis of the raster, in both positive and negative lag directions, and the other vector of
lags is oriented parallel to the y-axis of the raster, in the positive direction (Figure 2a).
Typically, h < 0.25× the smallest plot dimension (Buckley et al., 2016b); setting h to
this value reduces spurious statistical results arising from plot edge effects (Wiegand and
Moloney, 2004). A set of kernel bandwidth parameters, k = {kA, kB, kAB} controls the
smoothness of kernel surface generated for each input dataset and their intersection. For
the rasterized dataset that we used, the distances between cells were computed from their
center points.

Next, semi-variograms for A and B (γA, γB) and the semi-cross-variogram of the in-
tersection of A and B (γAB), are computed for the kernel-smoothed surfaces using a
Nadaraya-Watson type estimator:
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)
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Where s is the set of spatial locations and K(·) is a symmetric and strictly positive kernel
function with bandwidth parameters k (Garćıa-Soidán, 2007; Cuevas et al., 2013).

Finally, the empirical codispersion coefficient (Matheron, 1965) is computed for each lag
pair h as:

ρ̂AB(h) =
γ̂AB(h)√
γ̂A(h)γ̂B(h)

, (2)

where γ̂AB is the semi-cross-variogram, γ̂A and γ̂B are the semi-variograms of the two
variables (Vallejos et al., 2015).

Results are presented as an omni-directional “codispersion graph” (Figure 2b), where
codispersion variables are plotted for each combination of lags (h1, h2) in two dimensions
(Cuevas et al., 2013). The magnitudes of the codispersion values across the graph indicate
the strength of the spatial correlation between the two datasets, and range from −1.0
(strong negative codispersion) to +1.0 (strong positive codispersion). How these values
change across the graph is indicative of the lag distances at which the two variables are
more- or less-correlated and of possible anisotropy in the spatial association in the two
variables.
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2.4 significance testing using null models

For both datasets, we compared the observed codispersion values to those generated under
a “random labelling” null model (Buckley et al., 2016c). For each of 199 iterations of the
null model, the locations of all trees in the observed data were fixed, but their diameter
values were resampled randomly and without replacement, then reassigned to each tree.
For each iteration, the basal areas within each grid cell in each of the rasters were then
recalculated and the codispersion between abundance and basal area was re-computed.
Thus, this null model kept the spatial pattern of tree locations (and their abundances)
fixed, but broke the relationship between the number of trees and their sizes at the grid
cell scale. We use this null model test to determine whether the spatial distribution of
tree sizes is non-random, such as would occur if small trees formed clumps or thickets
of recruitment and/or where large trees are over-dispersed (less likely to occur near one
another).

Figure 3. Scatterplots of abundance (number of individuals) and total basal area (m2) of white pine (PIST), red
maple (ACRU), black birch (BELE) and red oak (QURU) within 20 × 20m grid cells in the Harvard Forest 35-ha
forest dynamics plot (500 × 700m) at six time steps (0 to 200 years). Time = 0 represents the observed patterns at
the 2014 plot measurement.

Figure 4. Total basal area (m2) of white pine (PIST), red maple (ACRU), black birch (BELE) and red oak (QURU)
within 20 × 20m grid cells in the Harvard Forest 35-ha forest dynamics plot (500 × 700m) at six time steps (0 to
200 years). Time = 0 represents the observed patterns at the 2014 plot measurement.
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Figure 5. Observed codispersion of the basal area (m2) and abundance of white pine (PIST), red maple (ACRU),
black birch (BELE) and red oak (QURU) in 20 × 20m grid cells in the Harvard Forest 35-ha forest dynamics plot
(500 × 700m) at six time steps (0 to 200 years). Contour intervals = 0.1 codispersion units.

Figure 6. Observed minus expected codispersion values for white pine (PIST), red maple (ACRU), black birch
(BELE) and red oak (QURU) under the random labelling model (RLM) for the Harvard Forest 35-ha forest dynamics
plot (500 × 700m) at six time steps (0 to 200 years). The RLM keeps species distributions the same, but assigns
their diameters randomly.

3. results

3.1 the simulated forest

The incremental and eventual complete removal of eastern hemlock within the Harvard
Forest plot simulation caused the formation of small-to-large canopy gaps in the forest, in-
ducing a process of recruitment and establishment into these gaps by the four focal species.
Relative to their prior abundances and distributions, all species increased in abundance and
basal area across the plot over the first 60 years (Figures 3 and 4). Black birch (BELE), a
relatively shade intolerant species, established most quickly in the largest gaps and formed
dense thickets of trees, resulting in an increase in the strength of codispersion between its
abundance and basal area during these first 60 years. Subsequently, self-thinning caused a
widespread decrease in BELE abundance and abundance-basal area codispersion (Figure
5: BELE). This dieback effect enabled young PIST and ACRU individuals to establish,
outcompete BELE, and emerge into canopy gaps in some grid cells. Mature, canopy-
dominant individuals of these species, scattered throughout the plot, also increased in
basal area, likely due to the opening-up of adjacent canopies after hemlock removal. This
led to grid cells with high numbers of small trees near cells with fewer, larger-diameter
trees and consequently, a negative abundance-basal area codispersion at small spatial lags
at t = 150 years for both of these species (Figure 5: PIST and ACRU). At the last time
step, codispersion between abundance and basal area for PIST also was anisotropic across
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the plot, as indicated by a change from negative to positive codispersion in a northwest
direction (Figure 5: PIST, t = 200). Only minor changes in abundance or spatial pattern
of stand structure occurred over the 200 years for red oak due to its long life-span and low
establishment rates (Figure 5: QURU). Observed codispersion values for all species were
smaller than expected under the random labelling null model (Figures 6 and 7). The one
exception was for BELE at time 90 (Figures 6 and 7: BELE, t = 90), where observed and
null-model codispersion values were not significantly different from random expectation at
most spatial lags.

Figure 7. Null model results for the random labelling model where species distributions were kept the same, but
their diameters were randomly reassigned 199 times and the codispersion between abundance and basal area 20×20m
grid cells was recalculated for white pine (PIST), red maple (ACRU), black birch (BELE) and red oak (QURU) in
the Harvard Forest 35-ha forest dynamics plot (500 × 700m) at six time steps (0 to 200 years).

Figure 8. Scatterplots of abundance (number of individuals) and total basal area (m2) of white pine (PIST), red
maple (ACRU), black birch (BELE) and red oak (QURU) in 55m grid cells in the Lyford Plot at five time steps
between 1969 and 2011.

3.2 the lyford plot

Structural changes over 42 years were subtle for the four focal species in the maturing
Lyford plot (Figures 8 and 9). Codispersion between abundance and basal area was posi-
tive for all species, albeit higher for BELE and QURU than for PIST and ACRU (Figure
10). For ACRU, BELE, and QURU, codispersion generally became more strongly positive
through time. Null model analyses indicated that the overall increase in basal area for
these species through time, concomitant with a decrease in overall numbers, induced a loss
of significance in the codispersion relationship (Figures 11 and 12). White pine (PIST) was
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not distributed widely across the plot and, over the five sample times, decreased slightly in
abundance overall but increased in basal area in those grid cells where it dominated (Fig-
ures 8 and 9). There was not a clear change in observed codispersion between abundance
and basal area for PIST through time, but null modelling indicated that the relationship
became significantly weaker than expected at time 1991 (Figures 11 and 12); it was largely
non-significant at all but the largest lags for all other times (Figure 12). There was no
indication of anisotropy in codispersion relationships for any of the four species or sample
times in the Lyford Plot.

Figure 9. Total basal area (m2) of white pine (PIST), red maple (ACRU), black birch (BELE) and red oak (QURU)
in 5 × 5m grid cells in the Lyford plot (note that we clipped the plot so that it was a rectangle of 125 × 190m) at
five time steps between 1969 and 2011.

Figure 10. Observed codispersion of the basal area (m2) and abundance of white pine (PIST), red maple (ACRU),
black birch (BELE) and red oak (QURU) in 5 × 5m grid cells in the Lyford plot at five time steps between 1969
and 2011. Contour intervals= 0.05 codispersion units.
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4. discussion

Our two contrasting examples of forest dynamics, one of stand-level (20-m resolution)
structural changes after widespread disturbance, and the other of local-scale (5-m resolu-
tion) within-stand changes in an aging, relatively mature forest, suggest that codispersion
analyses of species-specific, abundance-basal area relationships can illustrate a range of
spatial patterns in forest stand structure and succession.

Using simulated data based on a large forest plot in which the dominant tree is rapidly
declining, codispersion analysis coupled to null models clearly detected establishment
and subsequent self-thinning of black birch (BELE) thickets in the relatively large
gaps that were created by the loss of hemlock. The abundance-basal area relationship
strengthened for BELE for the first 90 years. As the number of thickets of saplings
increased, the distribution of diameters became more homogeneous across grid cells,
forming a relationship resembling line 3 in Figure 1, resulting in temporally strengthening
codispersion. However, this also caused codispersion to resemble that expected under a
random labelling null model after time t = 90 years. Thereafter, increasing mortality of
BELE individuals due to self-thinning and interspecific competition for light and space
led to a more variable distribution of the locations and sizes of this species across the
plot, and a subsequent weakening in codispersion between abundance and basal area. In
contrast, codispersion results for white pine (PIST) and red maple (ACRU) suggested
a sequence of an increasing weakening of covariation between abundance and basal area
through time, and an eventual switch to a negative codispersion relationship at small
spatial lags (e.g., line 4, Figure 1). This latter pattern reflects a situation in which some
grid cells contain a few, large-diameter PIST and ACRU trees that have gained dominance
(e.g., position B, Figure 1), whereas others contain abundant, small new recruits that are
taking advantage of gaps formed by the decline of black birch (e.g., position C, Figure 1).

Figure 11. Observed minus expected codispersion values under the random labelling model for white pine (PIST),
red maple (ACRU), black birch (BELE) and red oak (QURU) in 5 × 5m grid cells in the Lyford plot at five time
steps between 1969 and 2011. The RLM keeps species’ distributions the same, but assigns their diameters randomly
199 times.

Codispersion in the Lyford plot reflected the subtle effects of gradual succession sampled
over a relatively short period of time. Abundance and basal area of each of the four
species were positively codispersed at all spatial scales and all time points, but codispersion
declined as the forest aged, likely reflecting the increasing structural importance of larger
trees through time. Although the codispersion graphs showed little spatial variation within
the plot for any of the species, the method was able to detect temporal changes in stand
structure that were identified in the field. For example, as reported by Eisen and Barker
Plotkin (2015), mature red oak (QURU) individuals increased in basal area over time while
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Figure 12. Null model results for four species under the random labelling model where species’ distributions were
kept the same, but their diameters were randomly reassigned 199 times and the codispersion between abundance
and basal area in 5 × 5m grid cells was recalculated for white pine (PIST), red maple (ACRU), black birch (BELE)
and red oak (QURU) in the Lyford plot at five time steps between 1969 and 2011.

concomitantly decreasing in abundance. This process resulted in a mixture of many grid
cells with no QURU trees and a few grid cells with relatively high QURU basal area, the
combination of which was reflected in increasingly positive codispersion relationship at all
spatial lags (e.g., line 3, Figure 1). In contrast, codispsersion of basal area and diameter of
PIST weakened through time as its abundance decreased overall but a few isolated mature
trees increased in their sizes (e.g., line 1, Figure 1).

Arising from this study are a number of research areas that require further exploration
and testing. Firstly, it is of interest to explore methods that incorporate temporal change
more formally into codispersion analysis. This would first involve computing differences
between time points within datasets, followed by the use of codispersion to analyze re-
lationships between the temporal differences. This approach could provide a means to
determine whether rates of forest change are more or less rapid in particular areas of a
plot, and the spatial extent at which this might occur (Detto and Muller-Landau, 2016).
Such spatiotemporal pattern analysis may be especially beneficial for examining dynamics
in stand structure across ecological gradients or boundaries where we might expect differ-
ent responses of vegetation (Buckley et al., 2016b). A complementary line of inquiry would
be to test the behaviour of codispersion analysis against idealized patterns that have been
generated using processes with well-defined spatio-temporal covariance structures (e.g.,
Gneiting, 2002; Ma, 2008; Daley et al., 2015). Second, further work is needed to estimate
uncertainty in the simulation models used to forecast spatio-temporal ecological patterns,
as well as the uncertainty inherent to the codispersion coefficient, and how these propagate
through into the codispersion analysis results. The former source of uncertainty deals with
the degree to which stochasticity is incorporated into the process parameters of forecasting
models (Clark et al., 2001), such as SORTIE, and will require further sensitivity analysis
and testing against observed data where possible. Quantifying uncertainty around vari-
ogram estimators that underpin the codispersion coefficient is non-trivial and is an area
of active research (Cressie and Wikle, 2011). Finally, further attention needs to be given
to deriving and applying different types of null models used for significance testing. The
random-labelling null model we used here changes only one aspect of stand structure, the
sizes of trees, but the spatial position and numbers of trees may also usefully be varied,
depending on the processes of interest (Buckley et al., 2016c). On the whole, results from
this study suggest that codispersion analysis was able to detect differences in forest stand
structural patterns that are indicative of processes of successional change.
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