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Abstract

The objective of the present article is to study about the prediction bound lengths of a
considered repairable model under Bayesian approach. The prediction length of bounds
and HPD intervals has been obtained under the assumption that the repair failure
rate increases monotonically as time parameter increases in the underlying model for
censored data.
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1. Introduction

The prediction of the future ordered observations shows, how long a sample of units might
run until all fail in life testing. In many applications, technical systems or sub - systems
have k− out− of − n structure, which has investigated extensively in literature. For such
a system, the system consisting of n components or subsystems, of which only k(≤ n > 0)
need to be functioning. The k− out− of − n model is commonly used model in reliability
theory. In this model, the failure of any component of the system does not influence
the components still at work. It finds wide applications in both industrial and military
systems. These systems include the multidisplay system in cockpits, multiengine system
in an airplane, and the multipurpose system in a hydraulic control system.

The system (n − 1) − out − of − n : G is consists with n components and works if
and only if (n − 1) components among the n, work simultaneously. The system and each
of its components can in only one of two states: working or failed. When a component
fails, it kept under the repair and the other components stay in the working state with
adjusted rates of failure. After repair, a component works as new and its actual lifetime is
same as initially. If failed component is repair before another component fails, the (n− 1)
components recover their initial lifetime. The lifetime and time of repair are independent.

We consider here 1− out− of − n : G, system which consists of n components of same
kind, with independent and identically distributed life - length. The system is observed
under an inspection policy, where inspection is made at the completion of a repair if it
starts at beginning of a repair. This leads us to a situation where separate observations
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on the unit’s performance and on repair facility are not feasible. Thus, available records
are the number of failures that occurred in the time interval between two repair epochs
i.e., the time instant at which a repair completes. Recently, Prakash (2011) have studied
some Bayes estimators for 1− out− of − n : G, Repairable System.

The objective of the present article is to predict the nature of future behavior of an
observation when sufficient information about past and the present behavior of an event
or an observation is known or given. We present here a Bayesian statistical analysis to
predict the future ordered statistic from the considered repairable model under item failure
censored (ordered) data. A good deal of literatures is available on predictive inference of the
future failure distribution. Howlader (1985) derived HPD intervals for kth order statistic
in the Rayleigh model. Raqab (1997) discussed the prediction problems for the Rayleigh
and Normal models. Howlader & Hossain (1995) have considered the Bayesian estimation
and prediction of Rayleigh parameter based on Type - II censored data. Sinha (1990),
Cramer & Kamps (1998), Raqab & Madi (2002), Sarhan & Tadj (2003), Ali - Mousa
& Al - Sagheer (2005), Ahmad et al (2007), Gherda & Boushaba (2011) and Prakash
& Singh (2013) are a little few of those who have been extensively studied predictive
inference for the future observations.

In present article, we predict the length of bounds for the future ordered statistic un-
der one - sided interval and interval with central coverage for both One - Sample and
Two - Samples Bayes prediction scenario. The highest posterior density intervals are also
obtained, and a simulation study has been done for illustration of proposed methods.
Application on real data of the proposed methods have also discussed.

2. Description of the model under study

The considered repairable system is based on following assumptions:
The system consists with n units and having a repair facility. Initially one unit starts

operating and remaining (n − 1) units are kept as inactive standbys. As soon as a unit
fails, it goes for repair and a standby unit is put on the operation. The repair policy is
based on First Come First Serves (FCFS), it is always open, and the repairs are perfect
with negligible switch over time.

The failure time distribution of online units and the repair time distribution of units
under repair are assume general, independent of each other and both are increasing failure
rate (IFR) distributions. The number of non - operative units defines the state of the
system, in the system at the time t(> 0). Further, the state n is called the down state of
the system.

The system is observed under an inspection policy where inspection is made at the com-
pletion of a repair, if it starts at the beginning of a repair. This leads us to a situation
where separate observations on the unit’s performance and on repair facility are not fea-
sible. Thus, available records are the number of failures that occurred in the time interval
between two repair epochs i.e., the time instant at which a repair completes.

Let, X(t) = i; i = 0, 1, ..., n be the number of non-operative units at time t. The system
is putting on a test and is observed continuously until n repairs are over. Let the system
be in state i(= 1, 2, ..., n − 1) initially whenever a first repair starts and the states of the
process are recorded at the completion of each repair. The failure rate ρik(t) of the system
at the state k if it was in the state i is given as

ρik(t) =
nik

u + 1
tv; u + 1 > nik, v > 0. (1)

Here, nik be sample size obtained from the system when system passes through the state
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i to state k, and u be the number of units failed when the system transits from the state i
to the state k. Here, the failure rate decreases with u increases. Re - parameterization of
failure rate is given as

ρ(t) = θtv ; θ =
nik

u + 1
. (2)

In life testing, the observations usually occurred in ordered manner such a way that
weakest items fail first and then second one and so on. Let us suppose that n(≥ 3) items
are put to test under the model without replacement and test terminates as soon as first
rth(≤ n) item fails.

Let x(1), x(2), ..., x(r)(= x) be the first r observed ordered item from the model having
the likelihood function

L (x|θ) ∝



r∏

j=1

f
(
x(j); θ

)

 .

(
f

(
x(r); θ

)

ρ
(
x(r)

)
)n−r

⇒ L (x|θ) ∝ θr Ar(x) e−θTr(x) ; (3)

where Ar(x) =
∏r

j=1 xv
(j) and Tr(x) = 1

v+1

(∑r
j=1 xv+1

(j) + (n− r)xv+1
(r)

)
is a sufficient statis-

tic for parameter θ.
From a Bayesian viewpoint, there is clearly no way in which one can say that one prior

is better than other. We select to restrict attention to a given flexible family of priors, and
choose one from that family, which seems to match best with our personal beliefs. One of
best choice for selecting the prior distribution is conjugate prior. We consider here Gamma
distribution as the conjugate prior for the parameter θ with probability density function

π(θ) ∝ θα−1 exp (−βθ) ; α > 0, β > 0, θ > 0. (4)

3. Bayes prediction bound lengths under One - Sample plan

Let x(1), x(2), ..., x(r) be the first r components of the observed ordered items from a sample
of size n. If Y =

(
y(1), y(2), ..., y(m)

)
be the second independent ordered random sample

of the future observations from the same model. Then Bayes predicative density of future
observation Y is denoted by h (y|x) and obtained by simplifying

h (y|x) ∝
∫

θ
f (y; θ) π∗ (θ|x) dθ ; (5)

where π∗ (θ|x) be the posterior density of the parameter θ obtained under prior given in
equation (4).

Solving (5), we have

h (y|x) ∝ (T ∗r (x))r+α yv

(
T ∗r (x) +

yv+1

v + 1

)−(r+α+1)

; T ∗r (x) = Tr(x) + β (6)

The Bayes predictive density function h (y|x) expresses the plausibility of Y given data
and prior information regarding the parameter.
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The Bayes predictive bounds with coverage (1 − τ) is defined for future observation Y
as

Pr (l1 ≤ Y ≤ l2) = 1− τ. (7)

Here l1 and l2 are the lower and upper Bayes prediction bounds for random variable Y,
and (1− τ) is called the confidence prediction coefficient.

The One - sided 100(1− τ)% Bayes prediction bounds are obtained by solving following
equality

Pr (Y ≤ l1) =
τ

2
= Pr (Y ≥ l2) . (8)

Solving (8), the lower and upper prediction bounds for Y are obtain as

l1 = {(v + 1) (T ∗r (x)) τ∗}η

and

l2 = ((v + 1) (T ∗r (x)) τ∗∗)η ;

where τ∗ = (τ1)
−λ− 1, τ∗∗ = (τ2)

−λ− 1, η = (v + 1)−1 , λ = (r + α)−1 , τ1 =
(
1− τ

2

)
and

τ2 =
(

τ
2

)
.

Hence, the Bayes prediction length of bounds is

I = l2 − l1. (9)

Now, the central coverage 100 τ% Bayes prediction bounds for future observation Y are
obtained similarly by solving following equality

Pr (Y ≤ l1C) =
1− τ

2
= Pr (Y ≥ l2C) . (10)

Solving (10), the lower and upper Bayes prediction bounds and length of Bayes prediction
bounds for future random observation Y are given as

l1C = ((v + 1) (T ∗r (x))ω∗)η ,

l2C = ((v + 1) (T ∗r (x))ω∗∗)η

and

IC = l2C − l1C ; (11)

where ω∗ =
((

1+τ
2

)−λ − 1
)

and ω∗∗ =
((

1−τ
2

)−λ − 1
)

.

4. Bayes prediction bound lengths under Two - Sample plan

We have first r observed ordered failure items x(1), x(2), ..., x(r) from the considered model.
If y(1), y(2), ..., y(m) is the second (unobserved) censored data of size m drawn independently
from same model, then the first sample is referred to as the informative sample, while the
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second one is referred to as the future sample. Based on an informative sample, our aim
is to predict the jth order statistic from future sample.

Based on the Bayes predictive density (6) of the future observation Y, the cumulative
density function is defined and obtained as

G (y|x) = Pr (Y ≤ y) =
∫ y

0
h (y|x) dy

⇒ G (y|x) = 1−
(

1 +
yv+1

(v + 1)T ∗r (x)

)−λ−1

. (12)

Now, if Yj denote the jth order statistic in future sample of size m (1 ≤ j ≤ m) then from m
future observations, the probability density function of the jth ordered future observation
is obtain from

φ (Yj) = j
(
m
j

)
(G (y|x))j−1 (1−G (y|x))m−j h (y|x) . (13)

The prediction limits for Yj , the jth smallest item of a set of m future ordered observations
follows the probability density function (13). The lower and upper Bayes prediction one -
sided 100(1− τ)% bounds for jth item is obtained from following equality

Pr (Y ≤ l1j) =
τ

2
= Pr (Y ≥ l2j) . (14)

The lower and upper Bayes prediction one - sided 100(1− τ)% bounds for jth item are the
solution of the following equalities obtained from (14)

j
(
m
j

) ∫ l1

0
zj−1 (1− z)m−j dz =

τ

2
(15)

and

j
(
m
j

) ∫ l2

0
zj−1 (1− z)m−j dz = 1− τ

2
(16)

where li = 1−
(
1 + lv+1

ij

(v+1)T ∗r (x)

)−λ−1

and i = 1, 2.

For first future observation (e.g., j = 1) the Bayes prediction lower and upper bounds
are obtained as

l11 = {(v + 1)T ∗r (x)ξ∗}η

and

l21 = {(v + 1)T ∗r (x)ξ∗∗}η ,

where ξ∗ = (τ∗ + 1)1/m − 1 and ξ∗∗ = (τ∗∗ + 1)1/m − 1.
Therefore, the Bayes prediction length of bounds for smallest future observation is

I = l21 − l11. (17)
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Similarly, the Bayes prediction bounds for last future observation (e.g., j = m) are obtained
as

l1m =
{
(v + 1)T ∗r (x)ξ+

}η

and

l2m =
{
(v + 1)T ∗r (x)ξ++

}η
,

where ξ+ =
(
1− τ

1/m
2

)−λ
− 1 and ξ++ =

(
1− τ

1/m
1

)−λ
− 1.

The Bayes prediction length of bounds for largest future observation is

I = l2m − l1m. (18)

On similar lines the central coverage Bayes prediction bounds under the two - sample plan
are given for smallest future observations as

l11C =
{
(v + 1)T ∗r (x)ω+

}η

and

l21C =
{
(v + 1)T ∗r (x)ω++

}η
,

where ω+ = (ω∗ + 1)1/m − 1 and ω++ = (ω∗∗ + 1)1/m − 1.
The central coverage Bayes prediction bounds for largest future observations are obtained

on similar line as

l1mC =
{
(v + 1)T ∗r (x)ω′

}η

and

l2mC =
{
(v + 1)T ∗r (x)ω′′

}η ;

where ω′ =
(
1− (

1−τ
2

)1/m
)−λ

− 1 and ω′′ =
(
1− (

1+τ
2

)1/m
)−λ

− 1.

The central coverage prediction length corresponding to first and last future observation
under two - sample plan are given respectively as

IC = l21C − l11C (19)

and

IC = l2mC − l1mC (20)

5. Highest posterior density intervals

In this section, our objective is to study about the highest posterior density (HPD) interval
for unknown parameter θ under considered repairable model. Since, the posterior density
π∗ (θ|x) corresponding to the parameter θ is unimodel.
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Thus, 100(1 − τ)% HPD interval [H1,H2] for parameter θ must satisfy the following
equations simultaneously.

∫ H2

H1

π∗ (θ|x) dθ = 1− τ (21)

and

π∗ (H1|x) = π∗ (H2|x) . (22)

Now, expressions (21) & (22) are rewritten as

∫ H2(T ∗r (X))

H1(T ∗r (X))

1
Γ(α + r)

e−zzα+r−1dz = 1− τ

⇒ 1
Γ(α + r)

[γ {(α + r), (H2T
∗
r (X))} − γ {(α + r), (H1T

∗
r (X))}] = 1− τ (23)

and
(

H2

H1

)α+r−1

= e−(H1−H2)T ∗r (X). (24)

Solve simultaneously the equations (23) & (24) to obtain the highest posterior density
limits H1 and H1.

6. Numerical analysis based on Simulated data

We illustrate the procedure by presenting a complete analysis under a simulated data set.
The random samples are generated as follows:

Case 1: One - Sample Plan

(1) Generate θ trough prior density π(θ) for a selected set of prior parametric values
(α, β) = (0.25, 0.50), (1.00, 1.00), (2.00, 1.40) and (4.00, 2.00). The values of (α, β)
are chosen here so as to keep the prior variance unity.

(2) Using θ obtained from step (1) with v = 1; a set of 10, 000 random samples of size
n = 15 has been drawn from the model.

(3) For the selected values of censored sample size r = 04, 06, 08, 12, 15, and level of
significance τ = 99%, 95%, 90%; the Bayes prediction lengths of bounds are obtain
for both cases and presented them in Table (1).

(4) It is observed from the table that, the lengths of Bayes prediction bounds under
One - Sample plan for both cases tend to be wider as the censored sample size r
increases when other parametric values are fixed.

(5) The length of bounds expended also, when combination of prior parameter (α, β)
increases.

(6) It is also seen that the length of bounds tends to be closer when the level of
significance τ decreases for both cases when other parametric values are fixed.

(7) It is observed also that the central coverage Bayes prediction length of bounds tends
to be closer as compare to one–sided Bayes prediction length of bounds. This shows
that the lengths of bounds under the central coverage criterion are robust.

Case 2: Two - Sample Plan
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The random samples are generated under Two - Sample plan as follows:

(1) A set of 10, 000 random samples of size n = 15 has been drawn from the model for
the similar set of parametric values as consider earlier in section 4.

(2) The Bayes prediction lengths of bounds are obtain for smallest and largest future
observation for both cases and presented in Tables (2 - 3).

(3) The properties of the Bayes prediction length of bounds under Two - Sample plan
for one - sided and central coverage prediction lengths have been seen similar to
the One - Sample plan respectively.

(4) It is also noted that the length of intervals tend to wider as compare to the smallest
and largest observations. This is a natural, since the prediction of the future order
statistic that is far away from the last observed value and has less accuracy than
that of other future order statistics.

(5) It is also observed that the central coverage Bayes prediction length of interval
tends to be closer as compare to one sided prediction length of interval. This
shows that the lengths of intervals under the central coverage criterion are robust.

Case 3: HPD Intervals

(1) The HPD limits are obtain for a set of 10, 000 random samples of size n = 15 which
has been drawn from the considered model for the similar set of parametric values
as consider earlier and presented in Table (4).

(2) It is observed from the table that the HPD limit becomes narrower as the prior
parameter (α, β) increases.

(3) Similar trend also has been seen when censored sample size r increases when other
parametric values are considered to be fixed.

(4) Further, the HPD length of interval becomes wider as the coverage probability τ
increases.

(5) It is also observed that the interval is least.

Remark. In case when the censored sample size r(= 15) the censoring criterion is reduces
to complete sample size criterion and hence all the result are valid for complete sample
case.

7. Real Life Example

A model is a useful representation that captures the essence of a real system and behaves
sufficiently like it in such a way that conclusions can be drawn from the model’s behavior
to aid in making prudent decisions about the real system. Situations in which the k−out−
of − n : G(F ) system serves as a useful model are

(1) A piece of stranded wire with n strands in which at least k strands are necessary to
pass the required current behaves as a k−out−of−n : G system. The same concept
generalizes to applications involving supply - type components with identical fixed
ratings for their capacity, flow, throughput and strength, such that system success
is achieved when a minimum supply is met, or when a certain threshold is exceeded

(2) A three - engine airplane which can stay in the air if and only if at least two of its
three engines are functioning is a 2− out− of − 3 : G.

(3) A space vehicle requiring three out of its four main engines to operate in order to
achieve orbit is a 3− out− of − 4 : G system.

The above two example are the system that tolerates the failure of one (and only
one) component, since such a failure reduces the system to a series system, which
is still a working system.
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(4) Reactor protection systems, sensor systems, alarm generation systems and other
decision mechanisms usually employ a k − out− of − n : G system.

(5) A bridge with n main supports that can survive an earthquake if and only if at least
k supports remain intact is approximately modeled as a k−out−of−n : G system.
Here, the modeling is qualitative rather than quantitative, since a bridge is usually
not structurally symmetric with respect to its supports, while a k − out − of − n
system is structurally symmetric with respect to its components.

A practical application of this model is presented in this paper by using example considered
by Tiana et al. (2008). The numerical finding are presented in the Table (5).

The finding are presented here for sample size n(= 6) and considered prior parameters
(α, β) = (1.00, 1.00). Other parametric values are chosen similar as discussed above as
required. All the properties discussed above under both sample plans for one-sided and
central coverage are seen to be similar.

Table 1. Bayes Prediction Length of Intervals under One-Sample Technique

n = 15 One - Sided Central Coverage
r (α, β) ↓ τ → 99% 95% 90% 99% 95% 90%

0.25,0.50 0.5924 0.4585 0.3870 0.5747 0.4448 0.3715
1.00,1.00 0.8818 0.6774 0.5739 0.8554 0.6571 0.5509

04 2.00,1.40 1.0927 0.8420 0.7119 1.0600 0.8167 0.6834
4.00,2.00 1.4268 1.0996 0.9300 1.3839 1.0666 0.8928
0.25,0.50 0.6229 0.4816 0.4072 0.6042 0.4671 0.3909
1.00,1.00 0.8998 0.6929 0.5874 0.8727 0.6721 0.5638

06 2.00,1.40 1.1101 0.8563 0.7237 1.0768 0.8306 0.6947
4.00,2.00 1.4397 1.1108 0.9389 1.3965 1.0774 0.9013
0.25,0.50 0.6357 0.4895 0.4140 0.6166 0.4748 0.3975
1.00,1.00 0.9091 0.7003 0.5922 0.8818 0.6793 0.5685

08 2.00,1.40 1.1158 0.8601 0.7279 1.0823 0.8344 0.6988
4.00,2.00 1.4451 1.1138 0.9422 1.4017 1.0803 0.9045
0.25,0.50 0.8295 0.6287 0.5282 0.7963 0.6098 0.4965
1.00,1.00 1.2148 0.9316 0.7848 1.1662 0.9036 0.7377

12 2.00,1.40 1.5169 1.1601 0.9790 1.4562 1.1253 0.9203
4.00,2.00 1.9809 1.5169 1.2786 1.9016 1.4713 1.2018
0.25,0.50 0.8651 0.6619 0.5594 0.8305 0.6421 0.5258
1.00,1.00 1.2556 0.9578 0.8062 1.2054 0.9290 0.7578

15 2.00,1.40 1.5451 1.1781 0.9931 1.4833 1.1427 0.9335
4.00,2.00 2.0088 1.5301 1.2882 1.9285 1.4842 1.2109
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Table 2. Bayes Prediction Length of Intervals under Two-Sample Technique (Smallest future Observation)

n = 15 One - Sided Central Coverage
r (α, β) ↓ τ → 99% 95% 90% 99% 95% 90%

0.25,0.50 0.5066 0.3751 0.3500 0.6050 0.4655 0.4426
1.00,1.00 0.7503 0.5522 0.5138 0.8983 0.6910 0.6523

04 2.00,1.40 0.9315 0.6870 0.6389 1.1144 0.8585 0.8132
4.00,2.00 1.2161 0.8983 0.8332 1.4582 1.1205 1.0603
0.25,0.50 0.5306 0.3915 0.3649 0.6384 0.4916 0.4634
1.00,1.00 0.7685 0.5678 0.5262 0.9202 0.7078 0.6688

06 2.00,1.40 0.9457 0.6994 0.6484 1.1337 0.8730 0.8244
4.00,2.00 1.2279 0.9078 0.8409 1.4709 1.1321 1.0701
0.25,0.50 0.5402 0.3995 0.3710 0.6489 0.4997 0.4724
1.00,1.00 0.7735 0.5718 0.5308 0.9272 0.7140 0.6750

08 2.00,1.40 0.9511 0.7031 0.6514 1.1398 0.8773 0.8294
4.00,2.00 1.2320 0.9101 0.8432 1.4756 1.1358 1.0734
0.25,0.50 0.7227 0.5339 0.4958 0.8268 0.6426 0.6111
1.00,1.00 1.0781 0.7923 0.7320 1.2548 0.9502 0.9046

12 2.00,1.40 1.3458 0.9842 0.9196 1.5594 1.1873 1.1248
4.00,2.00 1.7641 1.2854 1.2012 2.0321 1.5462 1.4685
0.25,0.50 0.7740 0.5585 0.5226 0.8861 0.6774 0.6438
1.00,1.00 1.1124 0.8140 0.7557 1.2816 0.9756 0.9269

15 2.00,1.40 1.3737 1.0032 0.9332 1.5820 1.2028 1.1391
4.00,2.00 1.7820 1.3019 1.2098 2.0540 1.5611 1.4801

Table 3. Bayes Prediction Length of Intervals under Two-Sample Technique (Largest future Observation)

n = 15 One - Sided Central Coverage
r (α, β) ↓ τ → 99% 95% 90% 99% 95% 90%

0.25,0.50 0.6102 0.4518 0.4216 0.7287 0.5607 0.5331
1.00,1.00 0.9037 0.6651 0.6189 1.0820 0.8323 0.7857

04 2.00,1.40 1.1220 0.8275 0.7696 1.3423 1.0341 0.9795
4.00,2.00 1.4648 1.0820 1.0036 1.7564 1.3496 1.2771
0.25,0.50 0.6391 0.4716 0.4395 0.7690 0.5921 0.5582
1.00,1.00 0.9257 0.6839 0.6338 1.1084 0.8525 0.8056

06 2.00,1.40 1.1391 0.8424 0.7810 1.3655 1.0515 0.9930
4.00,2.00 1.4790 1.0934 1.0129 1.7717 1.3636 1.2889
0.25,0.50 0.6507 0.4812 0.4469 0.7816 0.6019 0.5690
1.00,1.00 0.9317 0.6887 0.6394 1.1168 0.8600 0.8130

08 2.00,1.40 1.1456 0.8469 0.7846 1.3729 1.0567 0.9990
4.00,2.00 1.4839 1.0962 1.0156 1.7774 1.3681 1.2929
0.25,0.50 0.8705 0.6431 0.5972 0.9959 0.7740 0.7361
1.00,1.00 1.2986 0.9543 0.8817 1.5114 1.1445 1.0896

12 2.00,1.40 1.6210 1.1855 1.1077 1.8783 1.4301 1.3548
4.00,2.00 2.1249 1.5483 1.4469 2.4477 1.8624 1.7688
0.25,0.50 0.9323 0.6727 0.6295 1.0673 0.8159 0.7755
1.00,1.00 1.3399 0.9805 0.9102 1.5437 1.1751 1.1165

15 2.00,1.40 1.6546 1.2084 1.1240 1.9055 1.4488 1.3721
4.00,2.00 2.1464 1.5681 1.4572 2.4741 1.8804 1.7828
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Table 4. Highest Posterior Density (HPD) Limits

n = 15 H1 H2

r (α, β) ↓ τ → 99% 95% 90% 99% 95% 90%
0.25,0.50 1.2063 1.1903 1.1746 2.3443 2.2688 2.1956
1.00,1.00 1.1940 1.1781 1.1624 2.2426 2.1704 2.1005

04 2.00,1.40 1.1831 1.1674 1.1518 2.1613 2.0917 2.0243
4.00,2.00 1.1341 1.1191 1.1042 2.0287 1.9635 1.9003
0.25,0.50 1.0901 1.0756 1.0614 2.2129 2.1416 2.0727
1.00,1.00 1.0847 1.0703 1.0561 2.1327 2.0640 1.9974

06 2.00,1.40 1.0291 1.0154 1.0020 2.0019 1.9374 1.8750
4.00,2.00 1.0936 1.0793 1.0649 1.9213 1.7517 1.6636
0.25,0.50 1.0582 1.0443 1.0304 1.8561 1.7016 1.6230
1.00,1.00 0.9935 0.9802 0.9672 1.7795 1.6313 1.5559

08 2.00,1.40 1.0535 1.0395 1.0257 1.8804 1.7145 1.6282
4.00,2.00 1.0426 1.0289 1.0151 1.8459 1.6854 1.6072
0.25,0.50 0.9904 0.9773 0.9643 1.7417 1.5967 1.5229
1.00,1.00 0.9640 0.9513 0.9387 1.7816 1.6568 1.5932

12 2.00,1.40 0.9464 0.9339 0.9215 1.7613 1.6420 1.5823
4.00,2.00 0.9328 0.9205 0.9083 1.7450 1.6284 1.5701
0.25,0.50 1.2063 1.1903 1.1746 2.3443 2.2688 2.1956
1.00,1.00 1.1940 1.1781 1.1624 2.2426 2.1704 2.1005

15 2.00,1.40 1.1831 1.1674 1.1518 2.1613 2.0917 2.0243
4.00,2.00 1.1341 1.1191 1.1042 2.0287 1.9635 1.9003

Table 5. Bayes Prediction Bound Lengths

One - Sided Central Coverage
99% 95% 90% 99% 95% 90%

One Sample Plan 0.7596 0.682 0.5105 0.6912 0.5223 0.596
Two Sample Plan

Smallest Observation 0.497 0.4904 0.4857 0.4771 0.4914 0.4884
Largest Observation 0.873 0.864 0.8566 0.8452 0.8654 0.8612

HPD Interval H1 H2

0.8059 0.7988 0.7929 0.7965 0.7949 0.7839

8. Conclusion

In the present article we study about the prediction bound lengths of a repairable model
under Bayesian approach. The Bayes prediction length of bounds and HPD intervals has
been obtained under assumption that the repair failure rate increases monotonically as
time parameter increases. An item-failure censored data used for the study. Both One-
Sample and Two-Sample Bayes prediction criterion have used. Also the Bayes prediction
lengths of bounds are obtained under one sided and central coverage criterion. A simulation
study has been carried out for analyzing the procedures. Examples based on Real data
set are discussed herewith. The lengths of bounds under the central coverage criterion are
seen here robust. It is also observed that the central coverage Bayes prediction length of
interval tends to be closer as compare to one - sided prediction length of interval.
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