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Abstract

This paper develops a novel spatial process using generalized skew-normal/independent
distributions when the usual Gaussian process assumptions are questionable and trans-
formation to a Gaussian random field is not appropriate. The proposed model provides
flexibility in capturing the effects of skewness and heavy tail behavior of the data while
maintaining spatial dependence using a conditional autoregressive structure. We use
Bayesian hierarchical methods to fit such models and show the validity of our approach.
Furthermore, we use Bayesian model selection criteria to choose appropriate models for
a real data set on the dengue fever infection in the state of Rio de Janeiro.

Keywords: Bayesian hierarchical methods · Conditional autoregressive · Conditional
predictive ordinate · Markov chain Monte Carlo · Scale mixture of skew-normal
distributions · Skew-normal/Independent distributions · Spatial association.
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1. Introduction

The field of spatial statistics is very active and has received considerable attention in
recent years. With the development of the geographic information systems (GIS), many
scientific fields such as agriculture, biology, ecology, geography and geology have been using
spatial data analysis to improve overall modeling strategies. Moreover, GIS information
has brought to the statistical community a new avenue of collecting data. Spatial methods
have become extremely important and necessary to accommodate spatial dependence when
performing data analysis. Due to the spatial characteristics for certain data, it is necessary
to correctly incorporate spatial dependence in modeling.
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To reduce unrealistic distributional assumptions, e.g., symmetry and/or thin tails, there
is a tendency in spatial data analysis towards more flexible spatial methods that are
capable of representing the data features in a more realistic way. For example, under a
geostatistical point of view, different asymmetric models are proposed to better adjust to
data sets where the normal assumption is not appropriate; see Kim and Mallick (2004);
Karimi et al. (2010).

In this paper, we focus on an approach based on the generalized linear mixed mod-
els (GLMM) (see Breslow and Clayton, 1993), which is an important class of statistical
models that are widely used to describe dependent data, such as is the case of spatial
data. For this type of data, GLMMs introduce dependence through random effects. Un-
der the GLMM framework, scientists have been using simultaneous autoregressive (SAR)
(see Whittle, 1954) as well as conditional autoregressive (CAR) random fields (see Besag,
1974), as tools to accommodate spatial dependence for modeling of data. However, the
Gaussian assumption in the random effect implies symmetry and thin tail, which may not
be appropriate for many applications; see, e.g., Prates et al. (2011b).

When the Gaussian assumption for the random effects is not adequate, e.g., when data
are skewed or present a heavy tail behavior, we need alternative distributions to realistically
represent the data; see, e.g., Genton (2004) and Arellano-Valle and Genton (2010). Sahu
et al. (2003) (see also Arellano-Valle and Azzalini, 2006) defined the multivariate skew-
normal (SN) distribution as follows. A random vector Y is said to follow a p-variate SN
distribution with location vector µ ∈ Rp, scale matrix Σ positive definite and skewness
p× p matrix Λ = diag (λ), where λ = (λ1, . . . , λp)

⊤, if its density is

f(y) = 2pφp(y|µ,Ω)Φp(Λ
⊤Ω−1(y − µ)|∆), y ∈ Rp, (1)

where Ω = Σ + ΛΛ⊤, ∆ = (I + Λ⊤Σ−1Λ)−1 = I − Λ⊤Ω−1Λ (with I being a p-
dimensional identity matrix), φp(·|µ,Σ), and Φp(·|Σ) is the Np(µ,Σ) density and the
Np(0,Σ) distribution function, respectively. We write SNp(µ,Σ,Λ) to indicate that Y

has density as given in Equation (1). For Λ = 0, Equation (1) reduces to the usual
Np(µ,Σ) distribution. The SN distribution as defined in Equation (1) can be stochastically
represented as

Y = µ + Λ|T1| + T2, (2)

where T1 ∼ Np(0, I) is independent of T2 ∼ Np(0,Σ) and |T1| denotes the component wise
absolute value of T1. Thus, |T1| follows a p-dimensional standard half-normal distribution
denoted by HNp(0, I). Note that the expression given in Equation (2) provides a repre-
sentation which is a useful tool for generation of random observations from Equation (1).
This representation is also appropriate for developing various theoretical properties of the
SN distribution. According to Sahu et al. (2003), the expectation and covariance matrix
of Y ∼ SNp(µ,Σ,Λ) are respectively given by

E[Y ] = µSN = µ +

√
2

π
λ (3)

and

Var[Y ] = ΣSN = Σ +

(
1 −

2

π

)
ΛΛ⊤ = Σ +

(
1 −

2

π

)
diag(λ2

1, . . . , λ
2
p).
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Because the matrix Λ is diagonal, the introduction of skewness increases the variance
elements Var[Yi] without increasing the covariance elements Cov(Yi, Yj) when i 6= j, thus
decreasing the correlation between Yi and Yj. Moreover, the skewness parameters do not
affect the spatial dependence structure provided by Σ. When Σ = σ2I, then the density
in Equation (1) gives independent marginal distributions. Different types of distributions
have also been proposed to overcome the limitation of Gaussian processes to handle skewed
or heavy tailed data; see, e.g., Allard and Naveau (2007); Prates et al. (2011b).

The generalized skew-normal/independent (GSNI) distribution used in this paper is de-
veloped primarily from the multivariate SN density given in Equation (1) proposed by
Sahu et al. (2003) for Bayesian regression problems, and it is not equivalent from the
multivariate skew-normal/independent (SNI) densities developed in Lachos et al. (2010),
which was motivated by the SN version proposed in Azzalini and Dalla Valle (1996). More-
over, the GSNI distribution has the advantage that the covariance matrix is partitioned in
two components: a spatial component and a skewness component. Furthermore, the GSNI
family has as members the normal and the SN distributions.

The DATASUS system, provided by the Brazilian Ministry of Heath, possesses a variety
of information in epidemiological diseases around Brazil. In our analysis, we focus on the
dengue fever in the counties of Rio de Janeiro state. Dengue fever is a disease that occurs
all over the world, mainly in tropical regions. Around the world 2.5 billion people live in
tropical areas where the probability of infection is high. Epidemiologists are aware that
the dengue fever has become a serious public health problem all over Brazil. We collected
explanatory variables as income and percentage of treated water in each county in Rio de
Janeiro to perform our analysis. In our study, we investigated the characteristics of the
counties with high risk of dengue fever incidence and which explanatory variables can be
used to better understand the contamination risk at each county.

The article is organized as follows. In Section 2 we introduce the GSNI distribution
and its properties. Using this distribution, we describe how to accommodate spatial de-
pendence. Then, we define a new generalized skew-Gaussian spatial field in Section 3.
In Section 4, we introduce a variety of model comparison criteria. We illustrate the new
proposed methodology with a real data analysis on the dengue fever infection in Rio de
Janeiro in Section 5. In Section 6, we conclude the paper with a discussion.

2. Generalized Skew-Normal/Independent Distributions

Following Zeller (2009), we define the p-dimensional generalized SNI (GSNI) vector Y ,
denoted from now on as Y ∼ GSNIp(µ,Σ,Λ,Hp(·; ν)), as a multivariate mixture of SN
distribution, where U = (U1, . . . , Up)

⊤ is a random vector instead of a random variable
used in Bandyopadhyay et al. (2010). Thus, Y can be represented as

π(y) =

∫

R
p

+

f(y|u)dHp(u; ν),

where f(·|u) is the conditional density of the random vector Y given U = u, and U is a
positive random vector with distribution function Hp(·; ν) =

∏p
i=1Hi(·; ν), with Hi(·; ν) =

H(·; ν) being the distribution of the mixture variable Ui, for i = 1, . . . , p, and ν is a
parameter indexing of the distribution H.

Similarly to Equation (2), Y can be stochastically represented as

Y = µ + U−1/2 ⊙ Z, (4)
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where Z ∼ SNp(0,Σ,Λ), U−1/2 = (U
−1/2
1 , . . . , U

−1/2
p )⊤, and Ui’s are positive, indepen-

dent and identically distributed random variables, independent of Z. In Equation (4), ⊙
represents the Hadamard product, that is, U ⊙ Z = (U1Z1, . . . , UpZp)

⊤ if both U and Z

are of dimension p, and U ⊙ Z = (U1Z, . . . , UdZ)⊤ if Z is scalar. Clearly, when U−1/2 is
set to be a scalar, the GSNI distribution is equivalent to the SNI distribution proposed by
Bandyopadhyay et al. (2010). As in proposition 2.4 presented in Arellano-Valle and Gen-
ton (2005), we obtain the fact that given U = u, Y has a SN distribution with location
vector µ, scale matrix Σu = diag(u−1/2)Σdiag(u−1/2), and skewness parameter matrix
Λu = diag(u−1/2)Λ, that is, Y |U = u ∼ SNp(µ,Σu,Λu). Hence, the density of Y is

f(y) = 2p

∫

R
p

+

φp(y|µ,Ωu)Φp( diag (u1/2)Λ⊤Ω−1(y − µ)|∆)dHp(u; ν)du,

where Ωu = diag (u−1/2)Ω diag (u−1/2).
From Equations (3) and (4), it is clear that

E[Y ] = µGSNI = µ +

√
2

π
κ1(ν)λ

and

Var[Y ] = ΣGSNI = κ2(ν)
(
Σ + ΛΛ⊤

)
+
(
κ2(ν) − κ2

1(ν)
) 2

π
λλ⊤,

where κα(ν) = E[U−α/2], α ∈ {1, 2}, and the moments are well defined.
As in Bandyopadhyay et al. (2010), this class of asymmetric GSNI distributions contains

a variety of skewed distributions based on different choices of the distribution of the mixture
U , such as, for j = 1, . . . , p:

(1) Multivariate SN: Hj = 1.
(2) Multivariate skew-t (ST): Hj = Γ(ν/2, ν/2).
(3) Multivariate skew-slash (SSL): Hj = Beta(ν, 1).

(4) Multivariate contaminated normal (SCN): Hj =

{
ν2 with prob ν1;

1 with prob 1 − ν1.

The normal, Student-t, slash and contaminated normal distributions are obtained by set-
ting Λ = 0. All these distributions have heavier tails than that of the SN one and can
be used for robust inference. In order to have a zero-mean vector (µGSNI = 0), we should
assume the location parameter µ = −

√
2/πκ1λ, which is what we assume throughout this

article.

3. Generalized Skew-Gaussian Spatial Field

Suppose that we observe (Yi,Xi) at sites i = 1, . . . , n, where Yi is the response variable
and Xi a q × 1 vector of covariates that corresponds to the response Yi at ith site. Let
e = (e1, . . . , en)⊤ be a vector of unobserved random effects with joint distribution F , which
introduces spatial dependence. A spatial GLMM assumes that, given (Xi, ei), the observa-
tions Yi’s are independent with density ϕ(yi; ξi) belonging to a one-parameter exponential
family

ϕ(y; θi) = exp

(
ξiy − ψ(ξi)

a(φ)
+ c(y, φ)

)
,
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where a(·), ψ(·) and c(·) are known functions, φ is a scale or dispersion parameter, ξi is
the canonical parameter, and the support of the distribution does not depend on ξi. Let
µi = E[Yi|X,e], where X = (X1, . . . ,Xn)⊤ is the matrix of covariates. The conditional
expectation µi is connected to the covariate Xi and random effect ei through a fixed link
function g given by

g(µi) = ηi + ei,

where ηi = X⊤

i β is the fixed effect and β is a q × 1 vector of regression coefficients of
covariates Xi. The dependence among random effects e determines the spatial dependence
among conditional means µ = (µ1, . . . , µn)⊤. Therefore, to fully specify a spatial GLMM, it
is necessary to specify both the link function g and the joint distribution F of e. Commonly,
F is chosen to be a multivariate normal with mean zero and covariance matrix Σ.

Instead of defining F as a multivariate normal distribution function, we propose to use
the GSNI distribution for the random effects in order to model areal dependence. Besag
(1974) proposed the CAR model as an alternative to capture dependence within areas.
The CAR model defines the following covariance matrix:

Σ = σ2(I − ρW )−1M ,

where W is an n × n matrix with zeros on the diagonal and the neighbor weights (wij)
in the off-diagonal positions, if i is neighbor of j, and 0 otherwise, and M is an n × n
diagonal matrix, that is, M = diag (τ2

1 , . . . , τ
2
n). To assure that Σ is positive definite, we

need some constraints wijτ
2
j = wjiτ

2
i and ρ ∈ (1/γmin, 1/γmax), where γ’s are the eigen

values of M−1/2WM1/2.
A random vector φ is defined to follow a generalized skew-Gaussian spatial field (GSGSF)

when φ ∼ GSNIn(µ,Σ,Λ,Hn(·; ν)), where Σ has a spatial dependence generated by a
CAR (SAR) structure and Hn(·; ν) is one of the distributions presented in Section 2.

Using a generalized linear mixed model approach, we can define a spatial random effect
to follow a GSGSF and therefore capture the skewness and/or heavy tail behavior of the
data. Suppose we have n responses Y = (Y1, . . . , Yn)⊤ that come from a one-parameter
exponential family distribution with density or mass ϕ. Thus, we can model the response
Y as

Yi ∼ ϕ(µi), i = 1, . . . , n,

g(µi) = X⊤

i β + φ,

φ ∼ GSGSFn

(
−

√
2

π
κ1λ1n,Σ, λI,Hn(·; ν)

)
,

where g is a link function, Xi is the vector of covariates for i = 1, . . . , n, β contains the
regression coefficients, 1n = (1, . . . , 1)⊤, Σ is the spatial dependence matrix generated
by the covariance structure of a CAR or SAR model, Hn is one of the positive distri-
butions presented in Section 2 and the skewness parameter λ is an only scalar to avoid
overparametrization and identifiability problems. With this representation, our approach
provides a flexible way to incorporate multivariate asymmetric spatial random effects into
modeling.
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4. Model Comparison

Here, we describe a variety of Bayesian criteria to perform model selection. Model com-
parison measures based on the posterior predictive densities are often easier to work on
MCMC settings. MCMC methods are able to produce these measures without much extra
effort.

The CPO model comparison is a Bayesian cross-validation approach; see, e.g., Geisser
(1993) and Dey et al. (1997). Let y be the observed responses and y−i denote the observed
response vector excluding the ith observation. The CPO statistic associated with the ith
observation, conditioning on y−i, is defined as the marginal posterior predictive density of
yi given by

CPOi =

∫
f(yi|θ)π(θ|y−i)dθ, (5)

where θ = (β, ρ, λ, ν, σ2) is the vector of parameters of the distribution with density f ,
f(yi|θ) is the conditional density or mass of yi given θ, and π(θ|y−i) is the posterior
density of θ based on data y−i. The intuition behind the CPO criterion is to choose a
model with higher predictive power measured in terms of predictive density. The idea is
similar to that of a leave-one-out cross validation in that the predictive density of each
data point is evaluated at a density fitted from all other data points.

Although a closed form of Equation (5) is not available, Dey et al. (1997) showed that
CPOi can be estimated from a Monte Carlo integration approach could be approximated
by a harmonic mean

ĈPOi = B




B∑

j=1

[
1

f(yi|θ(j))

]


−1

,

where B denotes the size of a MCMC sample of the posterior distribution π(θ|y) and θ(j)

is the parameter vector θ in the jth MCMC sample. This approximation is valid when Yi’s
are assumed to be conditionally independent given θ. Because the approximation is based
on the posterior given all the observations, its calculation is straightforward.

To compare different models, we define a single measure for each one of them, the

logarithm of the pseudo-marginal likelihood (LPML), defined by LPML =
∑n

i=1 log ĈPOi.
The model with the largest LPML is the best one. For any two competing models, the
comparison can be graphically displayed by plotting the log-ratio of CPOi from the two
models against the ith observation number. Points supporting either one of the models are
above and below the zero lines, respectively; see, e.g., Prates et al. (2011a). In addition
to the CPO, we are also going to consider other Bayesian model selection criteria, such
as the deviance information criterion (DIC; see Spiegelhalter et al., 2002), the expected
Akaike information criteria (EAIC; see Carlin and Louis, 2000) and the expected Bayesian
information criteria (EBIC; see Brooks, 2002).

DIC, EAIC and EBIC are based on the posterior mean of the deviance, that is, E [D(θ)],
which is also a measure of fit and can be approximated by using the MCMC output,
considering the value of

D̄ =
1

B

B∑

j=1

D(θ(j)),
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where B represents the number of iterations, and

D(θ) = −2 log(f(y|θ)) = −2
n∑

i=1

log(f(yi|θ)),

where f(yi|θ) is the conditional density or mass of yi given θ. EAIC, EBIC and DIC can
be estimated using MCMC output by considering

ÊAIC = D̄ + 2p, ÊBIC = D̄ + p log(n), and D̂IC = D̄ + ρ̂D = 2D̄ − D̂,

respectively, where p is the number of parameters in the model and n is the total number
of observations. The measure ρD is the effective number of parameters as described in
Spiegelhalter et al. (2002), and is defined as

ρD = E [D(θ)] −D(E[β],E[ρ],E[λ],E[ν],E[σ2]).

The term D(E[β],E[ρ],E[λ],E[ν],E[σ2]) is the deviance of the posterior mean obtained
when considering the mean values of the generated posterior means of the model parame-
ters, which is estimated by

D̂ = D


 1

B

B∑

j=1

β(j),
1

B

B∑

j=1

ρ(j),
1

B

B∑

j=1

λ(j),
1

B

B∑

j=1

ν(j),
1

B

B∑

j=1

(σ2)(j)


 .

Unlike the LPML, smaller values of the EAIC, EBIC and DIC imply better fit of the
model.

5. Application to Dengue Fever in Rio de Janeiro

Dengue is an arbovirus that has become a serious public health problem. Around the
world around 2.5 billion people live on areas with higher infection risk of dengue fever.
Tropical regions provide a susceptible habitat for the main disease vector, the mosquito
Aedes aegypti because of its temperature and humidity.

Brazil is a country localized in South America where most of its land is under a tropical
climate. Therefore, dengue fever has become a main public health problem in the country.
Rio de Janeiro is a state in Brazil with a high incidence of dengue fever cases. We collected
data for the number of cases of dengue fever by counties of Rio de Janeiro in the year of
2011; see http://www2.datasus.gov.br/DATASUS.

To study the dengue fever incidence, demographic information of each county was col-
lected and incorporated into the analysis to improve the fit of the model to the data. The
explanatory variables could provide possible explanations to dengue fever incidence in Rio
de Janeiro state. It is believed that social conditions as treated water supply and county
average income can be important explanatory variables to explain the occurrence of cases.
We use the CENSUS 2010 (see http://www.ibge.gov.br) to collect the population, per-
centage of homes living with more than one minimum salary (income), and percentage of
homes with treated water (water) by county.
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5.1 Exploratory analysis

It is believed that regions with high incidence of dengue fever should affect and/or be
affected by neighbors regions, because the Aedes Aegypti mosquito can migrate and infect
people in areas nearby. This observation makes reasonable to incorporate a spatial com-
ponent in the models. Moreover, we would like to check whether the residuals must be
modeled by a distribution with heavy tail and/or asymmetry.

To investigate the need of spatial data analysis, we compare the dengue fever incidence
and the expected number of infected (ENI) distributions. The ENI is calculated by

ENIi = popi

cases+

pop+

, i = 1, . . . , n,

where popi is the population risk at the ith region, pop+ is the total population in Rio de
Janeiro and cases+ is the total number of infected people in the state. Basically, the ENI
measures the expected number of infections assuming that all regions have the same relative
risk of a person getting infected. From Figure 1, it is clear that the spatial distribution of
dengue fever does not seem to be randomly distributed in space and, moreover, it seems
that the distributions of the incidence and ENI are not the same, which can produce
asymmetry and heavy tails when controlling by the population risk.

Figure 1. Left panel: incidence dengue fever counts for each county in Rio de Janeiro. Right panel: expected number
of infected for each county in Rio de Janeiro

After demonstrating the necessity of spatial effect in the data, we continue to investigate
the appropriateness of asymmetric and/or heavy tail models instead of the commonly used
normal regression. Let Yi be the incidence of dengue fever in each Rio de Janeiro county,
for i = 1, . . . , 92. We fit a Poisson regression as

Yi ∼ Poisson(ENIi × δi),

log(δi) = X⊤

i β,

where δi is the relative risk of each area, Xi are the covariates (income and water) and
β are the fixed effects, following which, we perform model fitting on the residuals of the
Poisson analysis to verify if the symmetry and thin tails assumptions are appropriate.
To do so, we use the mixsmsn R package (see Prates et al., 2011) for fitting the residual
with distributions of the SNI class and check what distribution is more adequate to fit
the residuals. Under the AIC measure the skew-t distribution is the one which best fits
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the residuals. This can be easily verified using the histogram in Figure 2 and it is hence
evident that the normal assumption for the residuals is not the most appropriate. In the
next section, we study the dengue fever incidence using the GSGSF to improve fitting.

Figure 2. Fitting of the normal, SN and skew-t distributions to the residuals of the dengue fever Poisson GLM
analysis.

5.2 Dengue fever with GSGSF

To accommodate spatial dependence between the neighboring counties, we use the proper
precision CAR matrix specified in Section 3, selecting M = diag (1/n1, . . . , 1/nn) and
wij = 1/ni, if i is a neighbor of j, and zero otherwise, where ni is the number of neighbors
of the ith region. Given σ2 and ρ, we can define Σ and use it in GSGSF representation,
with λ and ν to calculate ΣGSGSF.

Suppose that, for each of the 92 counties in Rio de Janeiro, we observe the incidence of
dengue fever (Yi), for i = 1, . . . , 92, and the set of covariates Xi, which are income and
water. Then, we model the counts of dengue fever by county as

Yi ∼ Poisson(ENIi × δi), i = 1, . . . , 92,

log(δi) = X⊤

i β + φi,

φ ∼ GSGSF92

(
−

√
2

π
κ1λ192,Σ, λI,H92(·; ν)

)
,

where δi is the relative risk of the ith county, for i = 1, . . . , 92, β contains the regres-
sion coefficients, and φ is a skew spatial field that accommodates the underlying spatial
dependency in Σ with a CAR structure, asymmetry in λ and heavy tails in ν, which is
a parameter of one of the possible H92(·; ν) presented in Section 2. To fully specify the
model, vague hyper-priors are chosen. The skewness parameter, λ, is set to follow a N(0, 10)
distribution, the spatial dependence parameter, ρ, follows a U(−1, 1) distribution, and the
overall precision parameter is set to follow a Γ(0.05, 0.05) distribution. We use the Open-
BUGS software (see Lunn et al., 2009) to fit the MCMC, where for each model, 250,000
samples were collected and after a burning period of 50,000 and thinning by 200 iteration
resulted in a valid sample of 1,000 observations.
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Within the new family proposed in Section 3, we fit φ with 5 different GSGSF (SN,
Student-t, skew-t, contaminated normal and skew contaminated normal) as an alternative
to the normal spatial field to analyze the incidence of dengue fever at the Rio de Janeiro
counties.

Table 1. The selection criteria for the different proposed models.

Model LPML DIC EAIC EBIC

Normal -453.27 844.03 675.55 688.16
Skew-normal -450.34 843.70 672.16 687.29

Student-t -451.82 844.52 671.70 686.83
Skew-t -449.01 843.07 668.81 686.46

Contaminated normal -451.90 844.47 670.40 688.05
Skew contaminated normal -449.50 843.75 669.29 688.28

From Table 1, we can see that the LPML, DIC, EBIC and EAIC statistics agreed that
the skew-t distribution is the preferred model. From these results, it is possible to observe
that the data present skewness, because all the skewed models performed better results
than their non-skewed versions. Moreover, the normal model has a poorer fit, indicating
the existence of asymmetry and heavy tails in the data, which can be accommodated by
the skew-t model.

From Table 1, the skew-t model is preferred, and we hence continue our analysis focusing
on the skew-t model. The results presented in Table 2 complements the ones obtained in
the skew-t and normal regressions. In the skew-t analysis, we can see that the higher income
of the region has less chance of dengue fever contamination, while in the normal regression,
the higher treated water has the higher chance of contamination. This is a counter intuitive
result because people who receive treated water do not have to keep water in containers,
which is the preferred reproduction location of the mosquito Aedes aegypti. This result
is probably due to the fact that the normal distribution cannot correctly accommodate
the regions that have unexpected counts of dengue fever (outliers). Moreover, we can see
that the 95% highest posterior density (HPD) intervals for the skew-t distribution are
smaller than for the normal case. From Table 1, we can see that the estimates of the tail
parameter ν = 5.3 and the skewness parameter λ = −0.77, with tight HPD intervals,
strongly evidence the necessity of more flexible models.

Table 2. The estimates for the skew-t and normal models.

Coefficients skew-t normal

Estimates 95% HPD interval Estimates 95% HPD interval

Intercept -0.63 (-0.78,-0.40) -0.80 (-1.10,-0.50)
Income -0.38 (-0.69,-0.08) -0.31 (-0.64,0.01)
Water 0.07 (-0.13,0.27) 0.38 (0.05,0.73)
λ -0.77 (-1.33,-0.35)
ν 5.30 (2.05,12.12)

The standardized mortality ratio (SMR) provides a point estimate of the infection rela-
tive risk, δi, of each county. The SMR is defined as

SMRi =
Yi

ENIi
, 1, . . . , 92,

for the state of Rio de Janeiro.



Chilean Journal of Statistics 153

Figure 3 presents the SMR and the mean posterior relative risk (RR) of each county in
Rio de Janeiro. It is clear that the mean RR is very close to the empirical point estimate.
This indicates a good fit of the skew-t model to the data and allows epidemiologists to
make inference on the RR of each county using the posterior sample.

Figure 3. Left panel: SMR estimates for the counties of Rio de Janeiro. Right panel: the posterior estimates of the
RR for the counties of Rio de Janeiro.

6. Conclusions

In this paper, we have presented the class of generalized skew-normal/independent dis-
tributions. The proposed class extends the skew-normal/independent class proposed by
Bandyopadhyay et al. (2010). With the use of the presented class and generalized linear
mixed models, we have incorporated the notion of asymmetric spatial fields with the cre-
ation of the generalized skew-Gaussian spatial fields. To illustrate an application of these
spatial fields, we have presented a dengue fever incidence study for the counties in the
state of Rio de Janeiro. From our analysis, it is clear that the skewed distributions outper-
formed the symmetric distributions and there have been also a need for heavy-tail models
to improve the fit to the data. The skew-t distribution had the best fit among the pos-
sible options, providing that counties with lower income have higher risk of dengue fever
infection. The presented models are easily implemented in the OpenBUGS software, by
means of which these models can be used to analyze data when the symmetry or normality
assumptions are not appropriate for empirical data with spatial dependence.
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