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Abstract

In this article, we propose a goodness-of-fit test for singly Type II censored samples from
a general location-scale distribution with unknown parameters. The test is a general-
ization to censored samples of that proposed by Michael (1983), which is based on the
empirical distribution function and a variance stabilizing transformation. Acceptance
regions for the probability-probability and Michael’s stabilized probability plots are de-
rived. These regions allow us the possibility of visualizing which data contribute to the
decision of rejecting the null hypothesis. We consider the exponential distribution with
unknown location and scale parameters as a particular case. We study the distribution
of the test statistic under the null hypothesis by Monte Carlo methods. The power of
the test is also estimated and compared by simulations to several distributions for the
alternative hypothesis and for different sample sizes and censoring proportions. We im-
plement the obtained results in R language. Finally, we illustrate the proposed results
by using reliability real data sets.

Keywords: Censored data · Location-scale family · PP and SP plots · R computer
language.

Mathematics Subject Classification: Primary 65C05 · Secondary 60E05

1. Introduction

An important problem arises in parametric inference when it is desired to establish from
which distribution a sample comes from. Extensive research has been devoted to goodness-
of-fit techniques considering this problem. A well known goodness-of-fit method is the
Kolmogorov-Smirnov (KS) test. This test compares the empirical cumulative distribution
function (EDF) with a completely established theoretical cumulative distribution function
(CDF) under the null hypothesis (H0). Without loss of generality, this CDF can be sup-
posed as that from a random variable (r.v.) with uniform distribution on [0,1], which is
denoted by U(0, 1). The statistic of the KS test is denoted by D.
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Stephens (1974) studied and compared the power of the KS test in the case of a com-
pletely known distribution with that of the tests based on the statistics V (Kuiper), W 2

(Cramer-von Mises), A2 (Anderson-Darling) and U2 (Watson), called of quadratic type,
and the well known chi-square (χ2) Pearson test. The quadratic type statistics are also
based on the EDF. These statistics measure the difference between the EDF and the CDF
by giving weights to their squared difference. The kind of chosen weight for this difference
allows to obtain the mentioned quadratic statistics; see D’Agostino and Stephens (1986).
Plots are considered as helpful tools to establish the goodness-of-fit of a certain distri-

bution to the data. A graph that allows us to visualize the coherence between the EDF
and the CDF specified in H0 is the probability-probability (PP) plot. This plot can be
associated with the KS test, but it has the disadvantage that some points can be more
variable than others. Several authors proposed statistics based on probability plots to as-
sess the goodness-of-fit of a distribution to the data. For instance, Gan and Kohler (1990)
proposed goodness-of-fit tests based on PP plots for the exponential, Gumbel and normal
distributions under H0.
Michael (1983) proposed a test based on the D statistic and the arcsin transformation.

This transformation stabilizes the variance of the plotted points in the PP graph associated
with the KS test. Michael’s graph is known as the stabilized probability (SP) plot, so that
the statistic of the Michael test is denoted by DSP. He studied the power of the test based
on DSP for testing uniformity and proved that it was more powerful than the KS test under
certain alternative hypotheses (H1).
Another situation that arises quite commonly in practice is having unknown parame-

ters for the distribution specified under H0 belonging to the location-scale family. Thus,
these parameters must be estimated. In this case, the problem of goodness-of-fit test is
more complicated, because the distribution of their test statistics depends on parameter
estimators, estimation method and sample size as well as the distribution considered in
H0. However, when location and scale parameters are estimated by appropriate methods,
the distribution of these goodness-of-fit statistics does not depend on the true values of
the unknown parameters; see D’Agostino and Stephens (1986). In particular, Lilliefors
(1967) modified the KS test for testing normality with unknown parameters; see Conover
(1999, Chapter 2). Also Michael (1983) proposed a modified version of the DSP statistic
to consider the unknown parameters for the normal distribution under H0.
Goodness-of-fit tests for the exponential, Gumbel and Weibull models, based on the SP

plot, were developed by Kimber (1985). He used the DSP statistic to test the composite
hypothesis of exponentiality with unknown scale parameter and location equal to zero
under the null hypothesis. Coles (1989) proposed two different goodness-of-fit tests for the
two-parameter Weibull model derived from the SP plot. One of these tests is based on
the DSP statistic while the other is based on the correlation coefficient derived from the
SP plot. Coles (1989) showed that these tests were more powerful in general than the KS
test, but both proposed tests and also the KS test were not consistent in detecting the
normal model. Puig and Stephens (2000) calculated percentages points of the W 2, A2 and
D statistics when the Laplace model with scale and location unknown is considered in H0.
All the mentioned authors studied and compared the power of their tests, taking different
distributions in H1 and several sample sizes; see, e.g., Gan and Kohler (1990). From these
studies, it can be said that there is no test among the proposed tests based on the EDF
that can be pointed out as the best overall. However, the well known Shapiro-Wilk test
(1965) is known to be the most powerful for testing normality; see Tiku (1974).
In many statistical applications in survival and reliability analysis, it is not possible to

obtain the complete information on survival or failure times for all the specimens or units
under study. This kind of data is called censored; see, e.g., Cohen (1991), Meeker and
Escobar (1998), Balakrishnan and Aggarwala (2000) and Lawless (2003). Once again, a
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point of interest is knowing whether a censored sample comes from a specified distribution
or not. Therefore, goodness-of-fit methods with censored data are useful and necessary.
The KS test with censored data was studied by Barr and Davidson (1973) and Dufour

and Maag (1978) in the case of a completely known distribution for the null hypothesis.
This test for the case of normality with unknown parameters can be modified by estimat-
ing the parameters with censored data using, for example, the maximum likelihood (ML)
method. However, this method does not provide analytical expressions for the estimators
and iterative numerical methods are needed to find them. For this reason, the ML estima-
tion method was discarded in the past due to its computational complexity. Thus, tests for
normality with unknown parameters using censored data were based on linear estimators,
as those proposed by Gupta (1952). Gupta’s estimates are easy to compute and have been
shown to be asymptotically efficient; see Ali and Chan (1964).
The quadratic type statistics W 2, A2 and U2 were modified for testing normality with

unknown parameters under H0, which were estimated for censored samples using Gupta’s
method; for more details, see Pettitt (1976), Pettitt and Stephens (1976), Stephens (1986)
and Lawless (2003). In addition, the statistics D, W 2, A2 and U2 were extended to case
of censored samples for some distributions of the location-scale family under the null
hypothesis; see D’Agostino and Stephens (1986). Also, the Michael’s test based on DSP

was extended for censored samples in both cases: a completely specified distribution and a
normal distribution with unknown parameters. In these cases, the power of the proposed
tests was high, especially in detecting some alternatives. The power of the test based inDSP

for testing normality under H0 is shown to be higher than the power of the corresponding
KS test; see Castro-Kuriss et al. (2009, 2010). The advantage of the test based on the DSP

statistic is that it will allow us to draw acceptance bands and to asses whether or not to
reject the null hypothesis by identifying the points that fall outside of these regions. This
points, if exists, are those that conduct the rejection of H0.
Due to the importance of the exponential distribution in reliability, great efforts have

been devoted to obtain goodness-of-fit tests for exponentiality. The described methodology
has been adapted for parameters known, for only the scale parameter unknown and for both
parameters of scale and location unknown, as well as for complete or censored samples.
Some tests are based on the EDF, others on regression and correlation type tests, while
others use special properties of the distribution, such as the fact of having a constant
hazard rate function or a variation coefficient equal to one. As an example of the tests
based on properties of the distribution, Balakrishnan (1983) studied the Tiku test for the
exponential distribution. It was showed that this test based on spacings is more powerful
than the tests considered by Dyer and Harbin (1981) for this purpose.
Kimber (1985) and Gan and Kohler (1990) proposed tests based on the DSP statistic

for testing exponentiality. Quadratic type tests were also extended to handle this problem.
The Shapiro-Wilk test for normality has been proposed as well, but it cannot successfully
detect all alternatives and is not consistent with some distributions under H1, especially
with distributions having a variation coefficient of one; see D’Agostino and Stephens (1986,
p. 223) and Spinelli and Stephens (1987). These authors proposed tests for exponentiality
based on the EDF as well as based on regression models with uncensored data, when ori-
gin and scale parameters are unknown. Brain and Shapiro (1983) developed two regression
tests for exponentiality with censored and uncensored data. One of these tests is recom-
mended when the alternative hypothesis has monotone hazard rate function, the other one
for use when it is suspected that the alternative hypothesis has a non-monotone hazard
rate function. These tests did not have good power against all the considered alternative
hyphoteses. As a general conclusion from all the studies about testing exponentiality with
uncensored data, we can say that it is impossible to give the best procedure against all the
alternatives. Nevertheless, when only some alternatives to the exponential distribution are
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considered, it is possible to find powerful tests (as the Shapiro-Wilk test, for example).
We can also mention a goodness-of-fit test for exponentiality based on the Kullback-

Leibler information proposed by Senoglu and Sürücü (2004), which was extended for test-
ing normality and uniformity. Unfortunately, in the last case, it is not consistent for some
distributions in H1 studied by the authors. Also, Balakrishnan et al. (2007) proposed a
goodness-of-fit test based on Kullback-Leibler information for exponentiality with pro-
gressively Type-II censored data. Balakrishnan et al. (2004) proposed goodness-of-fit tests
based on spacings for progressively Type II censored data from a general location-scale
distribution. This work is an extension of the tests for exponentiality introduced in Huber-
Carol et al. (2002, Chapter 9, pp 89-111).
The aims of this paper are (i) to extend the Michael test for distributions in the location-

scale family in H0 and Type II censored samples and (ii) to study the particular case of the
exponential distribution under the null hypothesis. We point out that the methodology
presented in this article for singly right Type II censoring is also valid for singly left as
well as doubly censoring (right and left). In addition, the results proposed here are valid
for the log-location-scale family too, as can be seen in the next section.
The article is structured as follows. Section 2 introduces the proposed test. Section

3 shows expressions for PP and SP plots with censored data and their corresponding
acceptance regions. Section 4 presents the test for exponentiality, including a comparison
between the powers of the proposed test and the KS and quadratic type tests with several
distributions in the alternative hypothesis, and applications of this test to real censored
data sets. The quantiles of the distribution of the statistic under the null hypothesis and
some useful programs to perform the test and the plots with censored data can be found
in the link mentioned in Section 4. Finally, in Section 5 some conclusions are drawn.

2. Goodness-of-fit Test and Censored Data

In this section 2, we provide some preliminary aspects and introduce the proposed test.

2.1 Preliminaries

An r.v. X belongs to the location-scale family of distributions if its probability density
function (PDF) is given by

f(x;µ, σ) =
1

σ
g

(
x− µ

σ

)
, (1)

where the functional form g(·) is completely specified. First, we assume that the location
and scale parameters, µ ∈ R and σ > 0, respectively, of f(x;µ, σ) are known and g(·)
is the standard form of the PDF f(x;µ, σ). The location-scale family is a rich class of
distributions that includes the normal, exponential, and Gumbel models as special cases.
Considering a logarithmic transformation, we propose a test that can also be applied to the
log-location-scale family, where the log-normal (LN), log-logistic and Weibull distributions
are its most important members; see, e.g., Meeker and Escobar (1998).
Let X(1), . . . , X(n) denote the order statistics of a sample from a completely specified

location-scale distribution, with CDF G([x− µ]/σ). In addition, let

U1 = G
(
X1−µ

σ

)
, . . . , Un = G

(
Xn−µ

σ

)
and U(j) = G

(
X(j)−µ

σ

)
, j = 1, . . . , n,

denote the corresponding ordered sample, which is an ordered U(0, 1) sample.
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The Michael statistic is defined by

DSP =max
1≤j≤n

{
2
π

∣∣∣∣arcsin(√ j−0.5
n

)
− arcsin

(√
U(j)

)∣∣∣∣} . (2)

If U ∼ U(0, 1), the r.v. S = 2arcsin(
√
U)/π follows a distribution with a PDF given

by fS(s) = π sin(πs)/2, with 0 < s < 1. The order statistics, denoted by S(1), . . . , S(n),
associated with a sample of size n from the distribution of the r.v. S, have a constant
asymptotic variance, i.e., as n → ∞ and j/n → q, Var[nS(j)] → 1/π2, which is independent
of q, for all j = 1, . . . , n. Due to this, Michael (1983) used the arcsin transformation to
stabilize the variance of the plotted points on the probability graphs associated with the
KS test. The Michael SP graph is obtained by plotting the points[

2
π arcsin

(√
j−0.5

n

)
, 2
π arcsin

(√
u(j)

)]
, j = 1, . . . , n.

Consider a censored sample with null and alternative hypotheses defined as

H0:F (x) ≡ G
(x−µ

σ

)
against H1:F (x) ̸= G

(x−µ
σ

)
. (3)

When the null distribution is completely specified, i.e., both µ and σ are known, by applying
the transformation G([X(i) − µ]/σ), for i = 1, . . . , r, the censored sample U(1), . . . , U(r) is
an ordered sample from a population with U(0, 1) distribution. Then, the expression given
in Equation (2) is valid and it can be used for any distribution in the location-scale family
as long as its parameters are completely specified. Moreover, without loss of generality, we
can assume the U(0,1) distribution under H0.
Let us now consider distributions with PDF given as in Equation (1), but with unknown

parameters. For testing the mentioned hypotheses in (3) with unknown location and scale
parameters based on censored data, these parameters must be replaced by their estimators.
However, even in the case of a true null hypothesis, the defined U(i), for i = 1, . . . , r, are
not an ordered sample from the U(0, 1) model. Therefore, the distribution of the DSP

statistic used for testing the given hypotheses, obtained when we replace the parameters
of the distribution by their estimates, is different from that obtained in the case of known
parameters. This happens because the distribution of this statistic depends on (i) the
distribution considered in H0, (ii) its parameter estimates, (iii) the estimation method and
(iv) the sample size. If the parameters are estimated by using appropriate methods, then
the distribution of the DSP statistic does not depend on the true values of the parameters;
see D’Agostino and Stephens (1986). We propose to estimate the unknown parameters
using the ML method.

2.2 Type II right censoring

In order to contrast the hypotheses given in (3) in the case of unknown parameters, let
X(1) < · · · < X(r) be the uncensored observations of a censored right sample of size n.
In this case, r is fixed and (n − r) observations are greater than X(r) and therefore the
censoring proportion is p = r/n. We propose the next modification for the statistic DSP

with censored observations and unknown parameters:

D⋆
SP =max

1≤j≤r

{
2
π

∣∣∣∣arcsin(√ j−0.5
n

)
− arcsin

(√
Û(j)

)∣∣∣∣}, (4)

where Û(j) = G([X(j) − µ̂]/σ̂), for j = 1, . . . , r.



120 C. Castro-Kuriss

In Equation (4), we compute µ̂ and σ̂ with the ML estimation method. We recall that for
some distributions under H0, the estimators of the unknown parameters can be computed
directly, while in some cases the obtained equations require the use of numerical methods
in order to achieve the solutions; see D’Agostino and Stephens (1986), Cohen (1991) and
Castro-Kuriss et al. (2009). For the KS test, the D statistic for censored observations can
also be modified using ML estimates for the unknown parameters, i.e.,

D⋆ =max
1≤j≤r

{
2

π

∣∣∣∣j − 0.5

n
− Û(j)

∣∣∣∣ }+
0.5

n
, (5)

where Û(i) is analogously defined as in Equation (4). We call the statistics D⋆
SP and D⋆

modified because they must be evaluated at the parameter estimates of µ and σ.

2.3 Computation algorithm

According to Section 2.2, the following algorithm can be proposed in order to carry out
the goodness-of-fit test:

(i) Compute the ML estimates of µ and σ, say µ̂ and σ̂, using appropriate expressions
according to the distribution considered under the null hypothesis.

(ii) Obtain Ẑ(j) = [X(j) − µ̂]/σ̂, for j = 1, . . . , r.

(iii) Determine Û(j) = G(Ẑ(j)), for j = 1, . . . , r.

(iv) Calculate D⋆
SP and D⋆, which we denote by d⋆SP and d⋆, by using the value of Û(j)

obtained in (ii) and (iii).
(v) Compare d⋆SP and d⋆ with the suitable quantiles for the distribution of the statistics

under H0.
(vi) Reject H0 at a given level of significance α if the observed value of D⋆

SP is greater than
the (1−α)th quantile of its distribution, which we denoted by dsp⋆1−α. An analogous
approach must be applied for D⋆.

We note that:

(i) The statistic proposed in Equation (4) can be extended to the case of singly left or
doubly type II censorship.

(ii) In the case mentioned in item (i), the corresponding tables of quantiles for the test
statistic must be obtained, depending on the distribution established under H0.

(iii) In this paper, we have analyzed the case of singly right censored samples because
we intend to apply the test to problems that arise in reliability analysis where this
censorship is often found.

3. SP-Plot and Acceptance Regions Using D⋆
SP

In this section, we provide expressions for PP and SP plots with censored data and their
corresponding acceptance regions.

3.1 PP and SP plots

The ordered uncensored observations from singly right censored samples (or singly left, or
both singly right and left) have the same position as in the whole ordered sample. There-
fore, the PP and SP plots can be obtained in this case. It is important to highlight that
the corresponding quantiles must be adequately computed and that only a portion of the
observations from the hypothetical distribution may be plotted. Thus, the censored obser-
vations do not appear in the proposed plots. In the general case of progressive censoring,
for example, this no longer holds.
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Table 1. Expressions for the indicated plots with censored data.

Plot Abscissa Ordinate

PP tj =
j − 0.5

n
uj = G

(
x(j)−µ̂

σ̂

)
SP wj =

2
π arcsin

(√
j−0.5

n

)
sj =

2
π arcsin

(√
G
(
x(j)−µ̂

σ̂

))

3.2 Acceptance regions

In an analogous way to the uncensored case, by using the quantiles of the distribution of
the D⋆ and D⋆

SP statistics with censored data, it is possible to obtain acceptance regions
for the PP and SP plots. Expressions for constructing these plots with censored data are
shown in Table 1, while Table 2 summarizes expressions for constructing (1−α) acceptance
regions on probability plots for censored samples based on D⋆ and D⋆

SP. They can also be
found in Castro-Kuriss et al. (2009) in the particular case of normality under H0. If the r
uncensored observations lie within the region constructed, then the null hypothesis cannot
be rejected at α level. In all the expressions presented in Tables 1 and 2, r is the number
of uncensored observations, n is the whole sample size and j = 1, . . . , r.

4. Testing Exponentiality

In this section, we present a test for exponentiality and carry out the numerical part of
this work. Specifically, we conduct a simulation study based on Monte Carlo methods
that allows us to obtain the quantiles of the proposed test statistics and compare the
power of the proposed test with those of the KS and quadratic type tests, using several
distributions in H1. In addition, we illustrate the obtained results with two examples based
on real censored data sets.

4.1 Test for exponentiality with censored data

For H0 given in (3), consider the distribution

G

(
x− µ

σ

)
= 1− exp

(
− [x− µ]

σ

)
, x ≥ µ, µ ∈ R, (6)

which corresponds to the exponential distribution denoted by Exp(µ, σ).
We are interested in the case of unknown parameters in Equation (6). Most of the

proposed tests based on Equation (6) in H0 consider σ as unknown and µ known and
assumed to be equal to zero. When µ is known, this can be eliminated by using the
transformation Y(i) = X(i) − µ, for i = 1, . . . , n, producing an ordered sample from the
Exp(0, σ) distribution, when H0 is true. When µ is unknown, the substitution Y(i) =
X(i) −X(1), for i = 1, . . . , n, can be used to eliminate µ, where X(1) denotes the minimum
of the sample, but it may not necessarily give the most powerful test; see Spinelli and
Stephens (1987). Then, we have two different tests, one where both µ and σ are unknown
and another in which µ is known and, as mentioned, can be assumed to be equal to zero.
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4.2 ML estimation

Let X(1), . . . , X(r) be an ordered censored sample from an exponential distribution, with
Type II censorship to the right from a complete sample of size n and both parameters in
Equation (6) being unknown. In this case, the ML estimators of the location and scale
parameters are not unbiased. Hence, unbiased estimators are derived from them and the
following expressions can be obtained:

σ̂ =

∑r
i=1Xi + (n− r)X(r) − nX(1)

r − 1
and µ̂ = X(1) −

σ̂

n
, (7)

where X(1) denotes the minimum and X(r) denotes the maximum of the censored sample.
If the sample is complete, expressions in (7) are also true with n = r and provide the
best linear unbiased estimator and the uniformly minimum variance unbiased estimator
for the location µ and scale σ parameters. In the case µ = 0, the ML estimator of the scale
parameter is obtained by

σ̂ =

∑r
i=1Xi + (n− r)X(r)

r
. (8)

The expression given in Equation (8) is valid when n = r and the sample is uncensored.

4.3 Quantiles of the proposed test statistic

Consider a null hypothesis as in Subsection 4.1 and both unknown parameters estimated
with expressions in (7). In this case, some quantiles for D⋆ and D⋆

SP from Equation (4) were
obtained by means of 20,000 independent Monte Carlo samples using different censoring
proportions (p) and sample sizes (n). Specifically, the quantiles were obtained for values
of p from 0.2 to 1 by 0.1 and for sample sizes from 20 to 90 by 10 (of course p = 1
leads to the quantiles of the distributions of the D⋆

SP statistic in the case of uncensored
samples). Some of the obtained results for this simulation study are displayed in Tables
3-4. We also include D⋆ quantiles in these tables, because in literature they are usually
obtained only by estimating the scale parameter and taking the location parameter fixed
at a value equal to zero; see D’Agostino and Stephens (1986). Tables for the D⋆ statistic
considering complete samples with both parameters estimated can be obtained in Spinelli
and Stephens (1987). Tables 5-7 provide quantiles for statistics W 2, A2 and U2 for testing
exponentially with censored data. More complete tables of these quantiles can be obtained
from the files DDSPCen.PDF and QuadCen.PDF available at http://chjs.deuv.cl/files.

4.4 Implementation

R language is a non-commercial and open-source software for statistical computing and
graphics that can be obtained from http://www.R-project.org; see R Development Core
Team (2009). For the particular case of the exponential distribution and for any sample size
and censoring proportion, we develop R programs (i) to obtain quantiles of the statistics D⋆

and D⋆
SP, (ii) to estimate the unknown parameters with the ML method, which is necessary

for calculating the mentioned quantiles, and (iii) to construct the plots indicated in Section
3 and compute the corresponding p-values for the obtained tests. All of these codes can also
be downloaded at http://chjs.deuv.cl/files. We recommend using these methods for
sample sizes of at least twenty (20). We consider that this will allow the interested reader
to use the proposed test of exponentiality in a wide range of problems in applied statistics.
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Table 3. Quantiles of the distribution of D⋆
SP for an exponential distribution under H0 for parameters estimated

with the ML method and censored data for the indicated values of p, n, and 1− α.

p n d⋆SP(0.50) d⋆SP(0.75) d⋆SP(0.90) d⋆SP(0.95) d⋆SP(0.99)

0.20 20 0.0424 0.0566 0.0742 0.0841 0.0985
30 0.0427 0.0578 0.0733 0.0827 0.1015
40 0.0425 0.0559 0.0702 0.0795 0.0972
50 0.0409 0.0533 0.0667 0.0757 0.0932
60 0.0398 0.0519 0.0645 0.0731 0.0899
70 0.0384 0.0494 0.0616 0.0695 0.0861
80 0.0374 0.0481 0.0597 0.0672 0.0820
90 0.0363 0.0468 0.0580 0.0650 0.0797

0.40 20 0.0610 0.0793 0.0991 0.1118 0.1386
30 0.0574 0.0741 0.0917 0.1029 0.1273
40 0.0539 0.0687 0.0850 0.0960 0.1188
50 0.0506 0.0643 0.0792 0.0887 0.1097
60 0.0484 0.0613 0.0751 0.0844 0.1030
70 0.0460 0.0579 0.0706 0.0795 0.0973
80 0.0444 0.0555 0.0681 0.0761 0.0924
90 0.0427 0.0538 0.0655 0.0727 0.0888

0.70 20 0.0759 0.0961 0.1179 0.1322 0.1616
30 0.0682 0.0856 0.1042 0.1168 0.1417
40 0.0628 0.0780 0.0952 0.1069 0.1296
50 0.0584 0.0723 0.0875 0.0974 0.1183
60 0.0551 0.0681 0.0824 0.0917 0.1102
70 0.0520 0.0641 0.0771 0.0863 0.1047
80 0.0497 0.0613 0.0739 0.0822 0.0986
90 0.0478 0.0590 0.0709 0.0784 0.0946

0.90 20 0.0835 0.1039 0.1260 0.1403 0.1713
30 0.0741 0.0914 0.1099 0.1228 0.1477
40 0.0677 0.0828 0.0999 0.1116 0.1325
50 0.0627 0.0764 0.0915 0.1013 0.1230
60 0.0589 0.0718 0.0858 0.0955 0.1139
70 0.0554 0.0674 0.0807 0.0895 0.1085
80 0.0527 0.0642 0.0767 0.0848 0.1017
90 0.0507 0.0616 0.0733 0.0809 0.0974

Table 4. Quantiles of the distribution of D⋆ for an exponential distribution under H0 for parameters estimated
with the ML method and censored data for the indicated values of p, n, and 1− α.

p n d⋆(0.50) d⋆(0.75) d⋆(0.90) d⋆(0.95) d⋆(0.99)
0.20 20 0.0678 0.0841 0.0966 0.1085 0.1254

30 0.0580 0.0712 0.0850 0.0936 0.1099
40 0.0512 0.0634 0.0756 0.0839 0.0987
50 0.0468 0.0573 0.0686 0.0759 0.0900
60 0.0431 0.0530 0.0638 0.0706 0.0838
70 0.0400 0.0492 0.0591 0.0655 0.0780
80 0.0378 0.0465 0.0556 0.0615 0.0733
90 0.0359 0.0443 0.0535 0.0589 0.0692

0.40 20 0.0985 0.1203 0.1431 0.1575 0.1855
30 0.0834 0.1019 0.1211 0.1331 0.1583
40 0.0732 0.0895 0.1070 0.1181 0.1411
50 0.0662 0.0807 0.0962 0.1058 0.1263
60 0.0609 0.0744 0.0884 0.0972 0.1146
70 0.0565 0.0687 0.0817 0.0907 0.1088
80 0.0533 0.0648 0.0771 0.0851 0.1017
90 0.0504 0.0615 0.0733 0.0809 0.0964

0.70 20 0.1289 0.1559 0.1845 0.2023 0.2389
30 0.1070 0.1291 0.1530 0.1682 0.1992
40 0.0938 0.1136 0.1344 0.1485 0.1760
50 0.0847 0.1022 0.1207 0.1328 0.1560
60 0.0776 0.0936 0.1108 0.1218 0.1437
70 0.0721 0.0869 0.1030 0.1138 0.1358
80 0.0674 0.0817 0.0970 0.1069 0.1259
90 0.0641 0.0774 0.0915 0.1010 0.1192

0.90 20 0.1416 0.1706 0.2012 0.2210 0.2610
30 0.1176 0.1414 0.1667 0.1837 0.2170
40 0.1027 0.1240 0.1462 0.1599 0.1897
50 0.0929 0.1116 0.1315 0.1441 0.1716
60 0.0852 0.1023 0.1207 0.1328 0.1567
70 0.0790 0.0951 0.1124 0.1236 0.1475
80 0.0739 0.0889 0.1051 0.1158 0.1374
90 0.0701 0.0846 0.0996 0.1094 0.1296
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Table 5. Quantiles of the distribution of W 2 for an exponential distribution under H0 for parameters estimated
with the ML method and censored data for the indicated values of p, n, and 1− α.

p n w2 ⋆
(0.50) w2 ⋆

(0.75) w2 ⋆
(0.90) w2 ⋆

(0.95) w2 ⋆
(0.99)

0.20 20 0.0040 0.0061 0.0090 0.0112 0.0149
30 0.0039 0.0065 0.0099 0.0126 0.0182
40 0.0040 0.0067 0.0105 0.0133 0.0204
50 0.0041 0.0068 0.0108 0.0138 0.0215
60 0.0041 0.0070 0.0111 0.0143 0.0219
70 0.0041 0.0070 0.0112 0.0145 0.0221
80 0.0042 0.0070 0.0114 0.0145 0.0231
90 0.0043 0.0072 0.0117 0.0150 0.0231

0.40 20 0.0145 0.0229 0.0352 0.0442 0.0660
30 0.0150 0.0246 0.0378 0.0481 0.0724
40 0.0154 0.0252 0.0393 0.0503 0.0776
50 0.0155 0.0255 0.0393 0.0506 0.0805
60 0.0157 0.0259 0.0405 0.0519 0.0783
70 0.0158 0.0258 0.0399 0.0517 0.0805
80 0.0159 0.0260 0.0410 0.0520 0.0819
90 0.0161 0.0264 0.0414 0.0536 0.0808

0.70 20 0.0399 0.0631 0.0946 0.1193 0.1778
30 0.0407 0.0646 0.0983 0.1236 0.1850
40 0.0418 0.0660 0.1015 0.1306 0.1947
50 0.0419 0.0671 0.1022 0.1309 0.1946
60 0.0422 0.0681 0.1029 0.1315 0.1988
70 0.0423 0.0679 0.1048 0.1335 0.2042
80 0.0426 0.0682 0.1053 0.1343 0.2041
90 0.0432 0.0693 0.1059 0.1355 0.2054

0.90 20 0.0590 0.0917 0.1376 0.1737 0.2589
30 0.0602 0.0939 0.1422 0.1768 0.2758
40 0.0617 0.0964 0.1461 0.1851 0.2719
50 0.0621 0.0977 0.1461 0.1872 0.2864
60 0.0631 0.0984 0.1490 0.1889 0.2873
70 0.0628 0.0986 0.1501 0.1901 0.2919
80 0.0631 0.0990 0.1486 0.1872 0.2888
90 0.0640 0.1006 0.1515 0.1898 0.2955

Table 6. Quantiles of the distribution of A2 for an exponential distribution under H0 for parameters estimated with
the ML method and censored data for the indicated values of p, n, and 1− α.

p n a2 ⋆
(0.50) a2 ⋆

(0.75) a2 ⋆
(0.90) a2 ⋆

(0.95) a2 ⋆
(0.99)

0.20 20 0.0551 0.0731 0.0997 0.1157 0.1414
30 0.0544 0.0791 0.1135 0.1384 0.1895
40 0.0559 0.0849 0.1243 0.1555 0.2226
50 0.0569 0.0877 0.1315 0.1634 0.2430
60 0.0585 0.0918 0.1394 0.1760 0.2615
70 0.0587 0.0935 0.1429 0.1820 0.2744
80 0.0604 0.0961 0.1481 0.1874 0.2855
90 0.0615 0.0992 0.1540 0.1946 0.2984

0.40 20 0.1144 0.1680 0.2462 0.3026 0.4350
30 0.1200 0.1863 0.2768 0.3477 0.5184
40 0.1249 0.1951 0.2948 0.3725 0.5781
50 0.1276 0.2003 0.3022 0.3897 0.5962
60 0.1299 0.2081 0.3166 0.4029 0.5997
70 0.1320 0.2103 0.3180 0.4108 0.6382
80 0.1345 0.2132 0.3247 0.4198 0.6643
90 0.1363 0.2186 0.3372 0.4295 0.6666

0.70 20 0.2298 0.3462 0.5069 0.6363 0.9453
30 0.2384 0.3660 0.5408 0.6797 1.0080
40 0.2465 0.3812 0.5727 0.7296 1.0878
50 0.2506 0.3884 0.5881 0.7374 1.1181
60 0.2556 0.3994 0.5960 0.7605 1.1185
70 0.2574 0.4029 0.6054 0.7781 1.1805
80 0.2605 0.4064 0.6158 0.7864 1.1883
90 0.2656 0.4153 0.6204 0.7912 1.2287

0.90 20 0.3288 0.4898 0.7170 0.8874 1.3385
30 0.3399 0.5130 0.7533 0.9420 1.4270
40 0.3546 0.5344 0.7922 0.9870 1.4663
50 0.3593 0.5467 0.8052 1.0055 1.5244
60 0.3672 0.5564 0.8238 1.0316 1.5392
70 0.3673 0.5573 0.8281 1.0479 1.5885
80 0.3710 0.5638 0.8356 1.0410 1.5802
90 0.3779 0.5752 0.8484 1.0541 1.6074
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Table 7. Quantiles of the distribution of U2 for an exponential distribution under H0 for parameters estimated with
the ML method and censored data for the indicated values of p, n, and 1− α.

p n u2 ⋆
(0.50) u2 ⋆

(0.75) u2 ⋆
(0.90) u2 ⋆

(0.95) u2 ⋆
(0.99)

0.20 20 0.0019 0.0027 0.0038 0.0046 0.0061
30 0.0022 0.0032 0.0046 0.0055 0.0077
40 0.0023 0.0035 0.0050 0.0061 0.0085
50 0.0024 0.0036 0.0052 0.0063 0.0089
60 0.0025 0.0038 0.0054 0.0066 0.0091
70 0.0025 0.0038 0.0055 0.0067 0.0093
80 0.0026 0.0039 0.0055 0.0067 0.0096
90 0.0026 0.0040 0.0057 0.0070 0.0098

0.40 20 0.0088 0.0131 0.0187 0.0230 0.0327
30 0.0096 0.0144 0.0208 0.0255 0.0366
40 0.0099 0.0151 0.0216 0.0267 0.0379
50 0.0102 0.0154 0.0221 0.0272 0.0398
60 0.0103 0.0156 0.0222 0.0275 0.0386
70 0.0104 0.0157 0.0226 0.0282 0.0410
80 0.0106 0.0158 0.0227 0.0281 0.0410
90 0.0106 0.0162 0.0235 0.0287 0.0411

0.70 20 0.0280 0.0429 0.0612 0.0762 0.1124
30 0.0295 0.0450 0.0649 0.0798 0.1152
40 0.0306 0.0464 0.0675 0.0837 0.1212
50 0.0311 0.0472 0.0677 0.0842 0.1224
60 0.0315 0.0480 0.0694 0.0848 0.1224
70 0.0317 0.0480 0.0700 0.0870 0.1275
80 0.0318 0.0484 0.0708 0.0880 0.1279
90 0.0326 0.0488 0.0713 0.0883 0.1283

0.90 20 0.0456 0.0682 0.0983 0.1202 0.1734
30 0.0475 0.0710 0.1020 0.1259 0.1805
40 0.0486 0.0733 0.1056 0.1290 0.1875
50 0.0493 0.0740 0.1067 0.1308 0.1903
60 0.0499 0.0747 0.1078 0.1329 0.1930
70 0.0499 0.0751 0.1090 0.1351 0.1967
80 0.0502 0.0753 0.1093 0.1359 0.1969
90 0.0513 0.0763 0.1101 0.1356 0.1988

4.5 Illustrative examples

Here, for the purposes of illustration, we apply the new goodness-of-fit test to real problems
that arise in the field of reliability.

4.5.1 Example 1

A study conducted by Dr. William Meeker in 1999 consisted of a factorial experiment
to compare the lifetimes of springs as a function of a processing temperature and of the
amount of displacement in the spring test (stroke). The r.v. of interest corresponds to k-
cycles obtained with the stroke at a temperature level with two different methods, one of
them was a new method while the other was the old one. In each temperature level, the
status for each observation (failed or not, i.e., if the observation is complete or censored,
respectively) was registered. The sample consists of n = 36 observations with three of them
censored at 5000 k-cycles. This type II censored sample is decreasingly ordered with respect
to the r.v. k-cycles at a temperature level of 500, regardless of the employed method. The
data set was provided to the author by Dr. Luis A. Escobar and it is summarized in Table
8, where the indicated values with ⋆ are the censored observations.
We want to test whether this censored sample can come from an exponential distribution

with both unknown parameters or not. The parameters were estimated to be µ̂ = 144.54
and σ̂ = 2392.69 using expressions in (7). We consider the proposed tests based on D⋆

and D⋆
SP for H0 and obtain the observed statistics d⋆ = 0.1165 (0.3 < p-value < 0.4) and

d⋆sp = 0.0655 (0.5 < p-value < 0.6). Both tests do not reject the hypothesis of exponentiality
under H0. We construct the PP and SP plots with the mentioned R code and, as expected,
all the observations fall inside of the 95% acceptance region of D⋆

sp, as well as the 95%
region of D⋆, as can be seen in the PP and SP plots of Figure 1. The values of the observed
statistics d⋆ and d⋆sp are obtained in the 16th ordered observation that corresponds to 1967
k-cyles.



Chilean Journal of Statistics 127

Table 8. Data set New Spring.

K-cycles Temp. Method K-cycles Temp. Method K-cycles Temp. Method
211 500 Old 1065 500 Old 3199 500 New
218 500 Old 1563 500 Old 3464 500 New
319 500 Old 1756 500 Old 3644 500 Old
551 500 Old 1967 500 Old 3674 500 Old
638 500 Old 1995 500 Old 3904 500 Old
650 500 Old 2029 500 Old 4006 500 Old
707 500 Old 2193 500 Old 4196 500 New
712 500 Old 2287 500 New 4542 500 New
752 500 New 2592 500 New 5000 500 New
834 500 Old 2785 500 Old 5000⋆ 500 New
997 500 Old 2843 500 New 5000⋆ 500 New
1016 500 New 2853 500 New 5000⋆ 500 Old
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Figure 1. PP (left) and SP plots of the r.v. k-cyles at temp. 500 of New Spring Data

4.5.2 Example 2

Lawless (2003) analyzed an example with data presented in Wilk et al. (1962). These
data consisted of lifetimes of transistors obtained from an accelerated life test. The lifetimes
are singly Type II censored and come from a sample of size n = 34, with three censored
observations. The lifetimes (in weeks) are given in Table 9 (three of them are censored and
denoted by asterisks). As can be seen, the data are heavily rounded off.

Table 9. Wilk data.

3 4 5 6 6 7 8 8 9 9 9 10 10 11 11 11 13
13 13 13 13 17 17 19 19 25 29 33 42 42 52 52⋆ 52⋆ 52⋆

We want to test whether the censored sample could come from a two-parameter ex-
ponential distribution. In this case, the parameters were estimated to be µ̂ = 2.4696
and σ̂ = 18.0333. We consider both proposed tests as in Example 1 and obtain the
following values for the observed statistics, d⋆ = 0.1753 (0.01 < p-value < 0.05) and
d⋆sp = 0.1028 (0.1 < p-value < 0.15). At a 5% level, the test based on D⋆ rejects H0 and
there is one observation out of the corresponding 95% acceptance region, while all the
observations fall inside of the 95% region of D⋆

sp, as can be seen in Figures 2. In these
figures, the observation falling outside of these regions is indicated. The plots also show
an asymmetric distribution and that the plotted points do not follow a straight line. This
indicates a bad specification of the postulated hypothetical distribution, in this case, the
exponential model. Our results are consistent with those obtained by Lawless (2003).
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Figure 2. PP (left) and SP plots of the Wilk data

4.6 Monte Carlo power comparison

As mentioned, in order to compare the power of the proposed test, a Monte Carlo study was
conducted. In this study, 20,000 independent samples were generated for different sample
sizes and censoring proportions. Censored samples with p = 0.3, 0.6, 0.8 were considered.
We have taken both parameters to be unknown and they were estimated by using the
ML estimation method by expressions in (7). The level of significance was established at
α = 0.05. The obtained results for this simulation study are summarized in Tables 10-
15 and have been graphically displayed in Figures 4-3. We consider distributions having
different properties: with increasing failure rate (as the Weibull distribution with parameter
greater than one, location equal to zero and scale equal to one), decreasing failure rate
(as the Weibull distribution with parameter less than one, location equal to zero and
scale equal to one), non-monotone failure rate (as the LN distribution), short tails (as the
uniform distribution), heavy tails (as the Cauchy distribution), symmetric (as the Student-
t distribution), and skew distributions (as the chi-squared distribution). Some of these
distributions were previously considered by other authors for analyzing exponentiality
under H0. We consider eighteen (18) distributions under H1, which are (i) chi-squared
with three different parameters, (ii) U(0,1), (iii) LN, (iv) half-Cauchy (HCau), (v) half-
normal (HN), (vi) Weibull with four different parameters (but scale equal to one and
location equal to zero), (vii) beta(2, 1), (viii) one-parameter Lomax, (ix) N(0, 1), (x)
Cauchy, (xi) Student-t and (xii) Laplace distributions. All the tests achieved the nominal
level, which was verified by taking 20,000 exponential samples in the simulation study.
We compare the proposed test power with that of the quadratic type tests for the null
hypothesis considered, with parameters also estimated with the ML method. It was also
necessary to obtain the corresponding quantiles of the distribution under H0 of each of
the statistics defined for those tests. Altogether, the comparative power of five tests was
analyzed.
From Tables 10-15 and from Figures 4-3, we have the following observations:
(i) As expected, for the analyzed tests and for every distribution considered in H1, the

power increases as the sample size increases. When the proportion of uncensored
observations increases, the power increases too for every distribution.

(ii) Under H0, the empirical power, as expected, is close to the nominal level. This can
be seen in the last row of the panel corresponding to each value of p in Tables 10-15.

(iii) The power of all the tests is low when p is small.
(iv) There is no test that can be pointed out as the most powerful overall for the alterna-

tives, sample sizes and censoring proportions considered. Among the five considered
tests, that based on the U2 statistics was in general out-performed by the others.
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(v) All the tests have little power for detecting the HN, HCau, Lomax with parameter
equal to two and LN distributions.

(vi) In the particular case of the LN distribution, the test based on D⋆
SP is better than

the others for all the sample sizes and proportion censoring considered.
(vii) The test based on D⋆

SP is in general more powerful than that based on D⋆, while
within the quadratic type tests that based on W 2 is in general more powerful, espe-
cially when n is small. With sample sizes over fifty (50), the power of the test based
on A2 is similar and sometimes slightly better than the power of the test based on
W 2.

(viii) The test based on D⋆
SP is more powerful for the increasing failure rate distributions

or, at least, is a good competitor of the better one.
(ix) All the tests have good power in detecting the normal, Cauchy, Student-T and Laplace

distributions. Due to this reason, we have not included figures of the estimated power
of the studied tests with these distributions as alternatives.

5. Concluding Remarks

In this paper, we have proposed a new goodness-of-fit test for a location-scale distribu-
tion under the null hypothesis. It was most comprehensively studied in the case of the
exponential family and it turns out to be powerful for most of the alternatives considered,
particularly when the proportion of complete observations is high. Among all the tests
previously proposed and studied for testing exponentiality by other authors including that
presented here, it is not possible to obtain one powerful for all the alternatives considered.
We also notice that a test can have good power with complete samples while, extending it
to censored samples it can lose its power and can even become inconsistent for some alter-
natives. We understand that the advantage of the tests based on the statistics D and DSP

is the possibility of drawings plots with acceptance regions, where not only the rejection
or not of the null hypothesis can be observed but also the points that make this decision.
This possibility is only obtained with these statistics of KS type based on the EDF, while
other tests designed for equivalent situations, such as the quadratic type tests, or the
goodness-of-fit tests based on Kullback-Leibler information, have acceptance regions that
cannot be drawn in probability plots. We are also developing a more extensive R package to
perform the estimations, tests and plots that will allow practitioners to use the proposed
tests in practical problems that will include not only the case of exponentiality but other
distributions under H0 as the normal and log-normal distributions.
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Table 10. Estimated power (in %) of tests based on the indicated statistics, models and values of n for p = 0.3 and
α = 0.05.

n = 20 n = 30 n = 40
Model D⋆ D⋆

sp W 2 A2 U2 D⋆ D⋆
sp W 2 A2 U2 D⋆ D⋆

sp W 2 A2 U2

Bet(2,1) 16 16 17 15 5 24 24 26 24 8 31 32 36 33 12
HCa(0,1) 5 5 5 5 5 5 6 5 5 5 5 5 5 5 4
HN(0,1) 6 6 6 6 4 6 6 6 6 5 6 6 7 6 4
LN(0,1) 8 8 8 7 4 9 9 9 8 4 10 12 11 10 5
Lom(0.5) 4 4 4 4 6 4 4 4 5 6 4 4 4 4 5
Lom(2) 4 4 3 5 8 5 4 4 6 9 5 4 5 7 10
Wei(0.5) 7 8 6 12 21 15 17 16 25 31 25 27 27 39 39
Wei(2) 12 12 13 12 4 18 19 20 18 6 23 25 27 24 9
Wei(3) 17 18 19 17 6 28 28 31 29 10 38 39 43 41 17
Wei(6) 24 24 27 24 8 40 39 44 41 18 54 54 60 57 30
χ2(1) 6 6 5 10 17 11 12 12 19 24 18 20 19 30 30
χ2(3) 7 8 8 7 4 9 9 9 8 4 10 11 11 9 4
χ2(4) 9 10 10 9 4 12 13 13 12 5 16 17 17 16 6
Cau(0,1) 93 92 94 93 79 99 99 99 99 96 100 100 100 100 99
Lap(0,1) 76 75 81 79 44 93 92 96 95 77 99 98 99 99 92
N(0,1) 52 54 58 55 22 76 75 81 79 49 88 87 92 91 68
t(3) 74 74 78 76 47 92 92 94 94 77 98 97 99 98 91
U(0,1) 6 6 7 6 4 7 7 7 6 5 7 7 7 6 4
Exp(0,1) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Table 11. Estimated power (in %) of tests based on the indicated statistics, models and values of n for p = 0.3 and
α = 0.05.

n = 50 n = 70 n = 90
Model D⋆ D⋆

sp W 2 A2 U2 D⋆ D⋆
sp W 2 A2 U2 D⋆ D⋆

sp W 2 A2 U2

Bet(2,1) 39 40 45 42 17 56 55 64 61 29 69 68 77 75 40
HCa(0,1) 6 6 6 5 5 6 6 6 6 5 6 6 6 6 4
HN(0,1) 7 7 7 6 5 7 7 8 7 5 8 7 8 7 5
LN(0,1) 13 16 14 13 6 17 22 20 20 8 21 29 25 26 10
Lom(0.5) 5 4 5 5 6 5 4 5 5 6 5 4 5 5 6
Lom(2) 7 5 7 9 11 9 6 10 12 12 11 8 12 15 13
Wei(0.5) 35 38 39 52 47 55 59 60 73 62 68 73 74 85 71
Wei(2) 31 33 35 33 13 44 46 51 49 21 56 59 65 63 30
Wei(3) 50 51 56 53 26 68 68 76 73 42 81 81 87 86 57
Wei(6) 68 67 74 71 43 85 83 90 88 64 93 92 96 95 79
χ2(1) 26 29 29 41 37 41 45 45 60 49 54 60 60 74 58
χ2(3) 12 14 13 11 5 16 18 18 17 7 18 22 22 21 8
χ2(4) 18 21 21 20 7 27 31 32 31 12 35 40 42 42 17
Cau(0,1) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Lap(0,1) 100 100 100 100 98 100 100 100 100 100 100 100 100 100 100
N(0,1) 95 95 97 97 83 99 99 100 100 96 100 100 100 100 99
t(3) 99 99 100 100 97 100 100 100 100 100 100 100 100 100 100
U(0,1) 8 7 8 7 5 8 8 9 8 5 9 9 10 9 5
Exp(0,1) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
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Table 12. Estimated power (in %) of tests based on the indicated statistics, models and values of n for p = 0.6 and
α = 0.05.

n = 20 n = 30 n = 40
Model D⋆ D⋆

sp W 2 A2 U2 D⋆ D⋆
sp W 2 A2 U2 D⋆ D⋆

sp W 2 A2 U2

Bet(2,1) 42 42 48 45 13 65 63 72 69 30 79 76 85 83 47
HCa(0,1) 5 5 5 5 6 6 5 6 6 7 5 5 6 5 6
HN(0,1) 7 8 8 7 3 9 10 10 9 5 10 11 11 10 5
LN(0,1) 6 7 6 6 4 8 10 8 8 5 8 13 9 9 6
Lom(0.5) 24 22 28 31 34 39 34 44 48 47 49 43 55 58 55
Lom(2) 5 5 6 7 8 7 5 7 8 9 7 5 8 8 10
U(0,1) 12 12 12 11 4 16 15 17 15 6 18 17 21 17 7
Wei(0.5) 33 36 40 48 48 56 60 63 72 66 71 74 77 84 78
Wei(2) 24 26 27 25 7 40 42 45 44 17 53 55 60 58 27
Wei(3) 40 42 46 43 14 63 64 70 68 33 79 78 85 83 52
Wei(6) 57 58 64 61 24 81 79 86 84 53 92 91 95 94 74
χ2(1) 19 21 23 30 31 34 36 39 49 44 45 49 51 62 55
χ2(3) 9 10 9 8 3 11 14 12 12 5 14 17 15 14 7
χ2(4) 13 15 14 13 4 21 24 23 22 8 26 31 30 29 12
Cau(0,1) 93 92 94 93 79 99 99 99 99 96 100 100 100 100 99
Lap(0,1) 76 75 81 79 44 93 92 96 95 77 99 98 99 99 92
N(0,1) 52 54 58 55 22 76 75 81 79 49 88 87 92 91 68
t(3) 74 74 78 76 47 92 92 94 94 77 98 97 99 98 91
Exp(0,1) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Table 13. Estimated power (in %) of tests based on the indicated statistics, models and values of n for p = 0.6 and
α = 0.05.

n = 50 n = 70 n = 90
Model D⋆ D⋆

sp W 2 A2 U2 D⋆ D⋆
sp W 2 A2 U2 D⋆ D⋆

sp W 2 A2 U2

Bet(2,1) 89 87 94 92 63 97 96 99 99 84 99 99 100 100 94
HCa(0,1) 6 6 6 6 7 6 5 6 6 6 6 5 6 6 7
HN(0,1) 12 12 13 12 6 15 14 16 15 7 17 16 19 18 9
LN(0,1) 11 17 11 12 7 13 25 14 17 10 17 33 19 23 15
Lom(0.5) 60 53 66 69 64 75 67 81 83 76 85 78 89 90 85
Lom(2) 8 6 9 10 11 10 7 11 12 11 12 8 14 14 13
U(0,1) 23 20 26 22 9 29 24 34 29 12 35 28 41 36 16
Wei(0.5) 83 86 88 93 86 94 96 97 99 95 98 99 99 100 98
Wei(2) 67 68 74 73 39 84 84 90 89 61 93 92 96 96 77
Wei(3) 90 88 93 92 68 97 97 99 99 88 99 99 100 100 96
Wei(6) 97 96 98 98 87 100 99 100 100 97 100 100 100 100 99
χ2(1) 58 64 64 75 65 75 81 81 89 78 85 90 90 95 87
χ2(3) 17 22 19 19 8 24 31 28 29 13 30 38 35 37 17
χ2(4) 35 41 40 40 17 50 57 56 58 29 63 69 70 72 43
Cau(0,1) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Lap(0,1) 100 100 100 100 98 100 100 100 100 100 100 100 100 100 100
N(0,1) 95 95 97 97 83 99 99 100 100 96 100 100 100 100 99
t(3) 99 99 100 100 97 100 100 100 100 100 100 100 100 100 100
Exp(0,1) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
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Table 14. Estimated power (in %) of tests based on the indicated statistics, models and values of n for p = 0.8 and
α = 0.05.

n = 20 n = 30 n = 40
Model D⋆ D⋆

sp W 2 A2 U2 D⋆ D⋆
sp W 2 A2 U2 D⋆ D⋆

sp W 2 A2 U2

Bet(2,1) 69 67 76 72 30 89 86 94 93 60 97 95 99 98 79
HCa(0,1) 13 10 15 15 16 16 12 19 19 20 19 13 23 22 22
HN(0,1) 10 11 10 9 4 14 14 15 13 7 17 16 19 16 8
LN(0,1) 6 7 6 6 6 7 9 8 7 7 7 11 8 8 8
Lom(0.5) 67 64 72 75 73 84 82 89 90 87 93 90 95 96 94
Lom(2) 10 8 12 13 14 14 11 17 18 18 17 12 21 22 20
U(0,1) 23 22 26 22 7 33 29 39 33 13 43 35 51 44 19
Wei(0.5) 57 59 64 71 66 79 81 85 90 84 90 92 94 97 92
Wei(2) 36 38 40 37 15 57 58 65 62 33 73 73 81 79 51
Wei(3) 59 59 65 61 28 82 81 87 86 59 93 92 96 95 79
Wei(6) 77 76 82 79 46 94 92 96 95 79 99 98 99 99 93
χ2(1) 28 30 34 41 37 45 49 53 62 54 58 63 65 75 65
χ2(3) 9 11 9 8 4 13 16 14 13 7 17 20 19 18 10
χ2(4) 16 19 17 15 7 25 30 29 27 14 34 40 40 39 21
Cau(0,1) 96 96 96 96 91 99 99 100 100 99 100 100 100 100 100
Lap(0,1) 88 87 90 89 70 98 97 99 98 94 100 100 100 100 99
N(0,1) 70 70 75 72 40 90 89 93 92 73 97 96 98 98 88
t(3) 85 85 88 86 67 97 97 98 98 91 99 99 100 100 98
Exp(0,1) 5 5 5 4 5 5 5 5 5 5 5 5 5 5 5

Table 15. Estimated power (in %) of tests based on the indicated statistics, models and values of n for p = 0.8 and
α = 0.05.

n = 50 n = 70 n = 90
Model D⋆ D⋆

sp W 2 A2 U2 D⋆ D⋆
sp W 2 A2 U2 D⋆ D⋆

sp W 2 A2 U2

Bet(2,1) 99 99 100 100 91 100 100 100 100 99 100 100 100 100 100
HN(0,1) 21 19 24 21 11 27 24 31 27 15 34 29 40 36 21
HCa(0,1) 22 15 26 25 24 28 17 33 30 29 34 20 39 36 35
LN(0,1) 9 14 9 9 10 10 21 10 12 13 13 29 14 17 17
Lom(0.5) 97 96 98 98 97 99 99 100 100 99 100 100 100 100 100
Lom(2) 21 15 25 26 23 27 18 32 33 28 33 23 40 40 34
U(0,1) 53 44 62 55 26 68 54 77 71 39 79 66 87 83 52
Wei(0.5) 96 97 98 99 97 99 100 100 100 99 100 100 100 100 100
Wei(2) 86 85 91 90 67 96 95 98 98 87 99 99 100 99 96
Wei(3) 98 97 99 99 91 100 100 100 100 99 100 100 100 100 100
Wei(6) 100 100 100 100 98 100 100 100 100 100 100 100 100 100 100
χ2(1) 71 77 77 86 75 86 90 90 95 88 94 96 96 99 94
χ2(3) 22 27 24 24 13 30 37 34 35 21 39 48 45 48 29
χ2(4) 45 52 51 52 30 63 68 70 71 48 77 82 84 85 65
Cau(0,1) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Lap(0,1) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
N(0,1) 99 99 100 100 96 100 100 100 100 100 100 100 100 100 100
t(3) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Exp(0,1) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
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(a) Half-normal and p = 0.3
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(b) Half-normal and p = 0.6
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(c) Half-normal and p = 0.8
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(d) LN(0,1) and p = 0.3
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(e) LN(0,1) and p = 0.6

20 40 60 80

0
20

40
60

80
10

0

Sample size (n)

E
m

pi
ric

al
 p

ow
er

(in
 %

)

(f) LN(0,1) and p = 0.8
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(g) Weibull(0.5) and p = 0.3
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(h) Weibull(0.5) and p = 0.6
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(i) Weibull(0.5) and p = 0.8
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(j) Weibull(2) and p = 0.3
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(k) Weibull(2) and p = 0.6
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(l) Weibull(2) and p = 0.8

Figure 3. Estimated power of the tests based on D⋆ (gray solid line), D⋆
SP (bold dotted line), W 2 (gray dashed

and dotted line), A2 (gray dashed line), and U2 (bold solid line) for the distribution specified in H1.
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(a) Lomax(2) and p = 0.3
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(b) Lomax(2) and p = 0.6
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(c) Lomax(2) and p = 0.8
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(d) χ2(1) and p = 0.3
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(e) χ2(1) and p = 0.6
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(f) χ2(1) and p = 0.8
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(g) χ2(3) and p = 0.3
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(h) χ2(3) and p = 0.6
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(i) χ2(3) and p = 0.8
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(j) χ2(4) and p = 0.3

20 40 60 80

0
20

40
60

80
10

0

Sample size (n)

E
m

pi
ric

al
 p

ow
er

(in
 %

)

(k) χ2(4) and p = 0.6

20 40 60 80

0
20

40
60

80
10

0

Sample size (n)

E
m

pi
ric

al
 p

ow
er

(in
 %

)

(l) χ2(4) and p = 0.8

Figure 4. Estimated power of the tests based on D⋆ (gray solid line), D⋆
SP (bold dotted line), W 2 (gray dashed

and dotted line), A2 (gray dashed line), and U2 (bold solid line) for the distribution specified in H1.
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