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1Instituto de Matemática y F́ısica, Universidad de Talca, Talca, Chile,
2Departamento de Estad́ıstica, Facultad de Ciencias F́ısicas y Matemáticas,
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Abstract

As in regression analysis, inference in measurement error models (MEM) can be strongly
modified by the inclusion or deletion of a small set of observations. Such observations
are called influential data. In this work, we present different influence measures based
on the Bayes risk and the q-divergence. These measures quantify the influence of a
small subset of the data on the posterior distribution for the structural parameters of
the independent Student-t MEM with weak nondifferential error. The advantage of the
influence measures presented in this work is that we can compute them for any subset
of data by using only one sample drawn from the posterior distribution. The samples
from the posterior distributions are obtained through Gibbs sampler algorithm, assum-
ing specific proper prior distributions. The Bayesian identifiability of the independent
Student-t MEM with weak nondifferential error is also discussed. Finally, the results are
illustrated with applications on two well-known real data sets.

Keywords: Bayesian analysis · Influential observations · Measurement error models
· MCMC methods · Student-t distribution.
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1. Introduction

A simple measurement error model (MEM) is given by

y = Σβ + ε (1)

and

x = ξ + u , (2)

where ξ = (ξ1, . . . , ξn)>, Σ is the n × 2 matrix (11n ξ), with 11n being a vector of n

ones and β = (β0, β1)
>. Here, y = (y1, . . . , yn)> and x = (x1, . . . , xn)> are the data and
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ε = (ε1, . . . , εn)> and u = (u1, . . . , un)> are the error terms. A normal distribution usually
is assumed for errors, for example, ε|φ1 ∼ Nn

(
0, φ−1

1 In

)
and u|φ2 ∼ Nn

(
0, φ−1

2 In

)
,

where ε and u are conditionally independent given the precision parameters φ1 and φ2,
i.e., (ε ⊥ u)| (φ1, φ2), and In is the n×n identity matrix. Hereafter, w |v denotes a random
variable w given a random variable v. This model has been broadly studied by Fuller (1987)
and Cheng and Van Ness (1999). Equations (1) and (2) are suitable to describe experiments
where the variables ξ and y have a linear relationship and ξ is observed through x. The
books of Fuller (1987), Cheng and Van Ness (1999), Gustafson (2004) and Carrol et al.
(2006) present several applications of MEM.

If ξi, for i = 1, . . . , n, are assumed fixed, the model given by Equations (1) and (2) is
called functional. However, if the elements of ξ are random variables, it is called a structural
model. A well-known structural MEM is when the ξi are normally and independently
distributed, i.e., ξ|φ3 ∼ Nn

(
µ11n, φ−1

3 In

)
, where φ3 is the precision parameter. Thus, the

normal structural MEM is given by

yi = β0 + β1ξi + εi (3)

and

xi = ξi + ui,

with

(εi, ui, ξi)
> |φ, µ

i.i.d.∼ N3

(
(0, 0, µ)> , diag−1 (φ)

)
, i = 1, . . . , n, (4)

where φ = (φ1, φ2, φ3)
>. Applications and classical statistical analysis of the structural

normal MEM given by Equations (3) and (4) can be found in Fuller (1987) and Cheng
and Van Ness (1999). Since explicit formulas of the posterior distributions can not be
obtained, Bayesian inference of Equations (3) and (4) have been mainly made by using
Markov chain Monte Carlo simulations. For Bayesian analysis of MEM and its applications
see, e.g., Lindley and El-Sayyad (1968), Zellner (1971, Chapter 5), Villegas (1972), Florens
et al. (1974), Bolfarine and Cordani (1993), Richardson and Gilks (1993), Dellaportas and
Stephens (1995), Richardson (1996), Aoki et al. (2003), Bolfarine and Arellano-Valle (2005)
and Bolfarine and Lachos (2006).

The model given by Equations (3) and (4) has two types of parameters: (β, φ, µ), called
structural parameters, and ξ1, . . . , ξn, called latent (or incidental) parameters. The objec-
tive usually is to make inference about the structural parameters or functions of them.
In this work, we assume a Student-t distribution in Equation (4) and propose different
measures for assessing the influence of a given subset of observations on the posterior dis-
tribution of the structural parameters. The problem of detecting influential observations
in MEM has been treated from the classical point of view by Kelly (1984), Wellman and
Gunst (1991), Abdullah (1995), Lee and Zhao (1996), Kim (2000), Galea et al. (2002a,b)
and Montenegro et al. (2009), among others. However, we only know the works by Quin-
tana et al. (2005) and Vidal et al. (2007) on detection of influential observations in MEM
from a Bayesian perspective.

The influence measures proposed in this work are based on the Bayes risk under quadratic
loss and the q-divergence between the posterior distributions of the structural parameters.
These measures were applied to other kinds of models for assessing the influence of model
assumptions; see, e.g., Kempthorne (1986), Peng and Dey (1995) and Arellano-Valle et al.
(2000). To compute them, we combine the idea of perturbation function; see, e.g., Kass et
al. (1989) and Weiss (1996) and Markov chain Monte Carlo (MCMC) methods.
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The rest of the paper is structured as follows. In Section 2, we set the MEM to be
analyzed and discuss identifiability. In Section 3, we present some influence measures based
on posterior Bayes risk and q-divergence and apply it to the structural Student-t MEM
with weak nondifferential error (WNDE). In Section 4, we focus on the implementation of
the Gibbs sampler algorithm. In Section 5, we apply the obtained results to two well-known
data sets. Finally, in Section 6, we sketch some conclusions and final remarks.

2. The Independent Student-t MEM with WNDE

From Equations (3) and (4), we have that (y ⊥ x)| (β, ξ, φ1, φ2). In this case, it is said that
the MEM has nondifferential error (NDE). In other words, x does not contain information
about y given ξ. For more details about NDE models, see Bolfarine and Arellano-Valle
(1998) and Carrol et al. (2006).

It is important to stress that the inference based on the normality assumption for the
MEM can be strongly affected by any perturbation in the data. Particularly, it is well
known that the normal models are quite vulnerable to the presence of outliers. For that
reason, we propose a model than provide results more robust than the normal one by
considering a Student-t distribution in Equation (4). Thus, the probability density function
(pdf) for (ε,u, ξ)> is given by

[ε,u, ξ |φ, µ, ν ] =
n∏

i=1

t3

(
(0, 0, µ)>, diag−1 (φ) , ν

)
, (5)

where [w |v ] denotes the conditional pdf of the distribution of w given v and tn (η,Ω, ν)
denotes the n-variate Student-t distribution with a location parameter η, a scale parameter
Ω and ν degrees of freedom. Since the elements of a multivariate Student-t distribution
are not independent, this structural Student-t MEM has differential error because does
not satisfy (y ⊥ x)| (β, ξ,φ, µ, ν). However, the model defined by Equations (1), (2) and
(5) satisfies E (y|β, ξ,x) = E (y|β, ξ) = Σβ, whenever ν > 1. In this case, E (y|β, ξ,x)
does not depend on x. Therefore, it is said that the MEM given by Equations (1), (2) and
(5) has a WNDE. Definition and some characterization resulting from WNDE models can
be seen in Bolfarine and Arellano-Valle (1998).

Under the Bayesian approach, we have to specify the prior distributions of the statistical
model and, therefore, we have to determine the dimension of the identified parameter
vector. This task is relevant since a parameterization of a statistical model must be able to
differentiate points on the parameter space that can be distinguished from the observations.
If this does not happen, then it is necessary to restrict the parameter space to achieve
that goal. This motivates the identifiability analysis of independent Student-t MEM with
WNDE from a Bayesian point of view.

2.1 Bayesian identification

Reiersol (1950) and Madansky (1959) established important identifiability results for the
structural MEM under normal errors. In our context, we consider the Student-t distri-
bution for the error terms. Although in Bayesian analysis identification issues present no
formal difficulties, from a computational point of view the identification problems could
imply ill-behaved posterior surfaces and, in such cases, MCMC methods can be difficult to
implement; for more details and references related to the identifiability and convergence
of the Gibbs sampler, see Hobert et al. (1997).
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As mentioned above, in this section, we focus on the Bayesian identifiability of the
independent Student-t MEM with WNDE. We conclude that the Student-t MEM with
WNDE is identified under specific parameter restrictions. It is important to stress that the
Bayesian identifiability is analyzed using the concept of parameter sufficiency, introduced
by Barankin (1961).

Definition 2.1 A function g(θ) of parameter θ is sufficient for the sample x, if the
conditional distribution of the sample x given θ is the same as the conditional distribution
of the sample x given g(θ), that is,

(x ⊥ θ)| g (θ) . (6)

The condition established in Definition 2.1 means that the distribution of x is completely
determined by g(θ), i.e., θ is redundant once g(θ) is known. It is relevant to remark that,
by the symmetry of a conditional independence relation, the parameter g(θ) is a sufficient
parameter if the conditional distribution of θ given the sufficient parameter g(θ) is not
updated by the sample, i.e., p(θ|x, g(θ)) = p(θ|g(θ)); see Dawid (1979) and Florens et al.
(1990).

The conditional independence relation given in Equation (6) establishes that the sample
x does not increase the knowledge about θ given the sufficient parameter ψ = g(θ).
Therefore, the parameterization θ is not identified by the data x. This situation can be
avoided if θ is a minimal sufficient parameter, that is, if θ is a sufficient parameter and if this
is a function of any other sufficient parameter. Consequently, if the parameterization of a
statistical model is based on a minimal sufficient parameter, then the parameterization does
not contain redundant information. These considerations motivate the following definition;
for more details, see Florens and Rolin (1984).

Definition 2.2 A sufficient parameter ψ = g(θ) is said to be Bayesian identified if ψ is
a minimal sufficient parameter.

Definition 2.2 establishes that a Bayesian identified parameter fully characterizes the
learning process underlying a Bayesian model. It is important to stress that if a parameter
θ is identified in the classical sense, then θ is Bayesian identified too. The reciprocal
result is not necessarily true and is a matter of prior null sets; see (Florens et al., 1990,
Chapter 4). Moreover, a Bayesian identified parameter is always a function of a countable
number of sampling expectations; see Florens et al. (1990, Chapter 4). This means that
a parameterization of interest ψ = g(θ) for some function g, is identified if there exist
measurable functions f and h such that

ψ = h{E(f(x)|θ)}.

It is relevant to remark that after integrating out the incidental component, namely ξ, in
the pdf given in Equation (5), the identification is lost even though the joint distribution
of (y,x, ξ) is identified. Specifically, when a model is reduced by marginalization or con-
ditionalization, the identification is typically lost; see, e.g., Florens et al. (1990, Chapter
4). Consequently, the next result proposes an identification restriction for the marginal
Student-t model of (y,x).

Theorem 2.3 For the MEM given by Equations (3) and (5), the marginal pdf of (yi, xi)>
with parameter ψ = (β̃, ψ1, ψ2, ψ3, ν) ∈ R2×R+×R+×R×R+, where β̃ = (β0 +β1µ, µ)>,
ψ1 = β2

1φ−1
3 + φ−1

1 , ψ2 = φ−1
3 + φ−1

2 , ψ3 = β1φ
−1
3 and ν > 4, is Bayesian identified by

(yi, xi)>, for i = 1, . . . , n.
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Proof It consists of writing the parameters of the marginal model induced by (yi, xi)>
as a function of sampling expectations of the form E

(
f

(
(yi, xi)>

) |θ)
, where θ =

(β, φ1, φ2, φ3, µ, ν) and f is a measurable function, for i = 1, . . . , n. From Equations (3)
and (5) and after integrating out the incidental components, we have the marginal model
for (yi, xi)> given by

[yi, xi|θ] = t2




(
yi

xi

)∣∣∣∣∣∣

(
β0 + β1µ

µ

)
,


β2

1φ−1
3 + φ−1

1 β1φ
−1
3

β1φ
−1
3 φ−1

3 + φ−1
2


 , ν


 , i = 1, . . . , n.

Thus,

E
(
(yi, xi)>|θ

)
= (β0 + β1µ, µ)> , ν > 1,

Cov
(
(yi, xi)>|θ

)
=

ν

ν − 2

(
β2

1φ−1
3 + φ−1

1 β1φ
−1
3

β1φ
−1
3 φ−1

3 + φ−1
2

)
, ν > 2,

and, from Kim and Mallick (2003),

E(x4
i ) = 6ν(ν−2)µ2(φ−1

2 +φ−1
3 )+

3 ν2

(ν − 2)(ν − 4)
(φ−1

2 +φ−1
3 )2+µ4, ν > 4, i = 1, . . . , n.

Using the previous moments and after some algebra, we can write the parameter ν in
terms of the first, second and fourth moment, say

ν =
2{2E(x4

i |θ) + 7E(xi|θ)4 − 3E(x2
i |θ)

[
E(x2

i |θ) + 2E(xi|θ)2
]}

E(x4
i |θ)− 3E(x2

i |θ)2 + 2E(xi|θ)4
.

Since β̃, ψ1 = β2
1φ−1

3 + φ−1
1 , ψ2 = φ−1

3 + φ−1
2 , ψ3 = β1φ

−1
3 and ν are functions of countable

number of sampling expectations, we conclude that ψ = (β̃, ψ1, ψ2, ψ3, ν) is the minimal
sufficient parameter and, therefore, identified by observations. ¥

Using the result given in Theorem 2.3, we are able to propose some restrictions for the
identification of θ = (β, φ1, φ2, φ3, µ, ν). For example, we could use any of the identification
restrictions commonly used in the normal structural MEM.

Summarizing, in this work we consider a model given by Equations (1), (2) and the error
distribution

[ε,u, ξ |φ1, φ3, µ, ν, λ ] =
n∏

i=1

t3

(
(0, 0, µ)>, diag−1 (φ1, λφ1, φ3) , ν

)
, (7)

where λ > 0 is a known value.
In order to obtain known distributions for the full conditional distributions, we chose

normal prior distributions for mean parameters and gamma prior distributions for precision
parameters. It is important to stress that normal and gamma distributions give enough
flexibility to represent a great variety of prior information. For example, it is simple to
represent little information with such distributions. Thus, we chose the following prior
distributions:
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• β|b,B, φ1 ∼ N2

(
b, φ−1

1 B
)
, where b(2×1) and B(2×2) are known.

• µ|m, v, φ3 ∼ N
(
m,φ−1

3 v2
)
, where m and v are known.

• φj | aj , bj
ind.∼ Ga (aj/2, bj/2), where aj and bj are known for j = 1, 3. Here, Ga(a, b)

denotes the gamma distribution with expected value equal to a/b.
• ν| c ∼ Ga (1, c/2), where c is known.

3. Influential Observations

As mentioned early, inference in measurement error models (MEM) can be strongly modi-
fied by the inclusion or deletion influential observations. In this section, we study influence
measures whose computation is based on the idea of perturbation functions introduced by
Kass et al. (1989) and Weiss (1996).

Perturbation functions are used to deal with the problem of assessing the influence of
model assumptions on a posterior distribution [θ |y,M0 ] in a general context. Assume
that [θ |y,M0 ] is the posterior distribution of θ under the M0 model. Similarly, [θ |y, M1 ]
is the posterior distribution of the same parameter, but under the M1 model. Then, the
perturbation function is defined by

h (θ) =
[θ |y,M1 ]
[θ |y,M0 ]

.

Perturbation functions also can be used to assess the influence of a subset of data on
the posterior distribution of the structural parameters. The following lemma gives the
perturbation function for the structural parameters of the MEM given by Equations (1),
(2) and (7) when a subset of data is deleted. As usual, I denotes any subset with k
elements of the set {1, . . . , n}, and when a subset I has been deleted from the data,
(yI ,xI) and

(
y(I),x(I)

)
are the corresponding eliminated and remaining data. In this case,

the perturbation function for deletion cases is

h (θ) =

[
θ

∣∣y(I),x(I)

]

[θ |y,x ]
.

Lemma 3.1 The perturbation function for the structural parameters θ =(β, φ1, φ3, µ, ν)>

of the MEM given by Equations (1), (2) and (7) corresponding to the deletion cases is given
by

h (θ) =

(∏
i∈I t2 (yi, xi|θ)

)−1

Eπ∗

((∏
i∈I t2 (yi, xi|θ)

)−1
∣∣∣y,x

) , (8)

where π∗ is the posterior distribution of θ and

t2 (yi, xi|θ) = t2

((
yi

xi

) ∣∣∣∣∣

(
β0 + β1µ

µ

)
,

(
β2

1φ−1
3 + φ−1

1 β1φ
−1
3

β1φ
−1
3 φ−1

3 + (λφ1)
−1

)
, ν

)
.

Proof Marginalizing on Equation (7) and considering Equations (1) and (2), we have
[y,x |β, φ1, φ3, µ, ν ] =

∏n
i=1 t2 (yi, xi|θ). Thus, the posterior pdf of θ is

[θ |y,x ] =
[θ]

∏n
i=1 t2 (yi, xi|θ)∫

[θ]
∏n

i=1 t2 (yi, xi|θ) dθ
.
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Therefore, the perturbation function for deletion cases is

h (θ) =

[
θ

∣∣y(I),x(I)

]

[θ |y,x ]

=
[θ]

∏
i/∈I t2 (yi, xi|θ)∫

[θ]
∏

i/∈I t2 (yi, xi|θ) dθ
×

∫
[θ]

∏n
i=1 t2 (yi, xi|θ) dθ

[θ]
∏n

i=1 t2 (yi, xi|θ)

=
1∏

i∈I t2 (yi, xi|θ)
×

(∫
1∏

i∈I t2 (yi, xi|θ)
[θ]

∏n
i=1 t2 (yi, xi|θ)∫

[θ]
∏n

i=1 t2 (yi, xi|θ) dθ
dθ

)−1

=

(∏
i∈I t2 (yi, xi|θ)

)−1

∫ (∏
i∈I t2 (yi, xi|θ)

)−1 [θ |y,x ] dθ
.

¥

From Lemma 3.1, we can see that the perturbation function for the structural parame-
ters in deletion cases can be computed through MCMC techniques by sampling from the
posterior distribution.

3.1 Influence measures based on the posterior Bayes risk

Kempthorne (1986) defined different influence measures in a Bayesian decision theory
framework. In this context, the influence of a subset I of observations on the decision
problem is defined by its impact on the posterior Bayes risk. Consequently, if we choose
the action a and θ is the true state of the world, then preferences among actions are
determined by their posterior Bayes risk given by

r (π∗,a) = Eπ∗ (L (θ,a)) ,

where L (θ,a) is a loss function. In the context of parametric inference, objectives might
include estimation, prediction, hypothesis testing, model selection, etc., such as have been
established by Berger (1985), O’Hagan (1994) and Bernardo and Smith (1994). In this
section, we consider the estimation problem following Kempthorne (1986).

Specifically, we consider the quadratic loss function given by

L (θ,a) = (θ − a)>W (θ − a) = ‖θ − a‖2
W , (9)

with W being a known symmetric positive semi-definite matrix. In this case, the optimal
action is the Bayes action a∗ = Eπ∗ (θ), which gets the smallest posterior Bayes risk.

Two ways of measuring the influence of a subset I of observations on θ are

M1,θ (I) = r
(
π∗,a∗(I)

)
− r (π∗,a∗)

and

M2,θ (I) = r
(
π∗(I),a

∗
)
− r

(
π∗(I),a

∗
(I)

)
,

where π∗(I) denotes the posterior distribution on θ when the subset I of observations is
excluded from the analysis and a∗(I) is the corresponding Bayes action. On one hand, if we
consider that all data follow the same model, then the influence measure M1 is the cost
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of excluding the subset I of observations from the analysis in terms of the posterior Bayes
risk. On the other hand, if we consider that all data follow the same model except the
subset I, then M2 measures the increment of the posterior Bayes risk when the subset I is
incorrectly included in the data. For more details about this and other influence measures,
see Kempthorne (1986).

The next lemma gives a general expressions for these two measures.

Lemma 3.2 Under the quadratic loss function given by Equation (9),

M1,θ (I) = M2,θ (I) =
∥∥∥a∗ − a∗(I)

∥∥∥
2

W
.

Proof It is an immediate consequence of the well-known expression

Eπ∗

(
(θ − a)>W (θ − a)

)
= tr (WV∗) + ‖a∗ − a‖2

W ,

where V∗ is the posterior variance of θ. ¥

The next proposition provides an expression for M1 and M2 that only involves the
expected value of the unperturbed posterior distribution and the perturbation function h.

Proposition 3.3 Under the quadratic loss function given by Equation (9),

M1,θ (I) = M2,θ (I) = ‖Eπ∗ ([1− h (θ)]θ)‖2
W , (10)

where h (·) is the perturbation function of π∗ to π∗(I).

Proof From

a∗ − a∗(I) = Eπ∗ (θ)− Eπ∗(I)
(θ)

= Eπ∗ (θ)− Ehπ∗ (θ)

= Eπ∗ (θ − θh (θ))

and Lemma 3.2, the result is obtained. ¥

In our case, i.e., under the MEM given by Equations (1), (2) and (7), the function h (θ)
is given by Equation (8), and π∗ is the posterior pdf of (β, φ1, φ3, µ, ν) considering all data.
In the next section, we explain how to compute these influence measures for the MEM
given by Equations (1), (2) and (7).

3.2 Influence measures based on q-divergence

Another way of quantifying influence is by computing divergence measures between pos-
terior distributions computed with and without a given subset of the data. Csiszár (1967)
defined the q-divergence measure between two densities π1 and π2 on θ by

dq (π1, π2) =
∫

q

(
π1 (θ)
π2 (θ)

)
π2 (θ) dθ, (11)

where q is a convex function such that q (1) = 0.
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A wide class of different divergence measures is obtained from Equation (11). For exam-
ple:

• When q (z) = − log (z), the Kullback-Leibler divergence arises;
• When q (z) = (z − 1) log (z), the J-distance (or the symmetric version of Kullback-

Leibler divergence) is reached;
• When q (z) = 1/2 |z − 1|, the L1-distance arises; and
• When q (z) = (z − 1)2, the χ2-divergence is obtained.

Thus, taking π1 (θ) = π∗(I)

(
θ|y(I)

)
and π2 (θ) = π∗ (θ|y) in Equation (11), we have that

dq (I) = dq (π1, π2) can be interpreted as the q-influence of the data yI on the posterior
distribution of θ, which can be written as

dq (I) = Eπ∗ (q (h (θ))) , (12)

where the expected value is taken with respect to the unperturbed posterior distribution.
These influence measures have been already used by Weiss and Cook (1992), Peng and
Dey (1995), Weiss (1996), Arellano-Valle et al. (2000) and Vidal et al. (2007).

The influence measures M1,θ (I), M2,θ (I) and dq (I) do not determine when an obser-
vation is influential. We need to define a cutoff point in order to determine whether a small
subset of observations is influential or not. We use the proposal given by Peng and Dey
(1995) to determine when an observation is influential by using dq (I). The idea of this
proposal is explained next.

The pdf of a biased coin is

π1 (x |p) = px (1− p)1−x , x = 0, 1, p ∈ [0, 1] ,

while those of an unbiased coin is

π2 (x |p = 1/2) = 1/2 x = 0, 1, p ∈ [0, 1] .

From Equation (11), it is easy to obtain the q-divergence between a biased and an unbiased
coin by

dB
q (p) =

q (2p) + q (2 (1− p))
2

.

It is not difficult to see that dB
q (p) increases as p moves away from 0.5. In addition, dB

q (p)
is symmetric about p = 0.5 and dB

q (p) achieves its minimum at p = 0.5. In this point,
dB

q (0.5) = 0 and π1 = π2. Therefore, if we consider p ≥ 0.75 (or p ≤ 0.25) as a strong bias
in a coin, then, since

dB
L1

(0.75) = dB
χ2 (0.75) = 0.25,

we can indicate an influential observation when dL1 (i) ≥ 0.25 or dχ2 (i) ≥ 0.25. Simi-
larly, for the Kullback-Leibler divergence dB

KL (0.75) ≈ 0.143841, and for the J-distance
dB

J (0.75) ≈ 0.274653. Thus, if we use the Kullback-Leibler divergence, we can consider an
influential observation when dB

KL (i) > 0.14. Similarly, using the J-distance, an observation
which dJ (i) > 0.27 can be considered as influential.
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4. Implementation

The influence measures given by Equations (10) and (12) are expected values with respect
to the unperturbed posterior distribution of θ. Therefore, for any subset I, we can estimate
Equations (10) and (12) using a Monte Carlo estimator. Thus, we could obtain only one
sample {θ(j), j = 1, . . . ,m} from the unperturbed posterior distribution and estimate the
measures given by Equations (10) and (12) for any subset I.

Given the analytic intractability of the posterior distribution of the structural param-
eters, the model inference is usually performed via MCMC methods. Thus, the influ-
ence measures mentioned in Section 3 are estimated using Monte Carlo estimators, where
the generated data from the unperturbed posterior distribution of θ =(β, φ1, φ3, µ, ν) are
drawn by using a Metropolis-Hastings (MH) algorithm within a grouped Gibbs sampler
algorithm. Details about the implementation of these algorithms can be found in Hastings
(1970), Smith and Roberts (1993), Robert and Casella (1999) and Chen et al. (2000).

Expressing Equation (7) as

(εi, ui, ξi)
> |φ1, φ3, µ, λ, ωi

i.i.d.∼ N3

(
(0, 0, µ)> , ωidiag−1 (φ1, λφ1, φ3)

)
,

where ω−1
i

∣∣ ν
i.i.d.∼ Ga (ν/2, ν/2), the full conditional distributions are the following:

• The conditional distribution for β depends on y, φ1, ξ and ω = (ω1, . . . , ωn)> and is
given by

[β |y, φ1, ξ, ω ] = N2

(
b∗, φ−1

1 B∗) ,

where

b∗ = B∗
(
B−1b + Σ>diag−1 (ω)y

)

and

B∗ =
(
B−1 + Σ>diag−1 (ω)Σ

)−1
.

Since φ1| a1, b1
ind.∼ Ga (a1/2, b1/2), then the conditional distribution for β can also be

expressed as

[β |y, ξ, ω ] = t2

(
b∗,

a1

b1
B∗, a1

)
.

• The conditional distribution for φ1 depends on y, β, ξ and ω and is given by

[φ1 |y,β, ξ, ω ] = Ga
(

1 +
n + a1

2
,
1
2

(
b1 + ‖y −Σβ‖2

diag−1(ω) + ‖β − b‖2
B−1

))
.

• The conditional distribution for φ3 only depends on ξ, µ and ω and is given by

[φ3 |ξ, µ, ω ] = Ga

(
n + a3 + 1

2
,
1
2

(
b3 + ‖ξ − µ11n‖2

diag−1(ω) +
(µ−m)2

v2

))
.
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• The conditional distribution for ξ is given by

[ξ |y,x, β, φ1, φ3, µ,ω ] = Nn (m∗,V∗) ,

where

m∗ =
(
φ1β

2
1 + λφ1 + φ3

)−1 [φ1β1 (y − β011n) + λφ1x + φ3µ11n]

and

V∗ =
(
φ1β

2
1 + λφ1 + φ3

)−1 diag (ω) .

• The conditional distribution for µ only depends on φ3, ξ and ω and is given by

[µ |φ3, ξ, ω ] = N

(
m + v2ξ>diag−1 (ω) 11n

1 + v211>n diag−1 (ω) 11n

,
v2

φ3

(
1 + v211>n diag−1 (ω) 11n

)
)

.

• The conditional distribution for ω is given by

[ω |y,x, β, φ1, φ3, ξ, µ, ν ] =
n∏

i=1

IGa

(
ν + 1

2
,
ν + φ1ε

2
i + λφ1 (xi − ξi)

2 + φ3 (ξi − µ)2

2

)
,

where εi = yi − β0 − β1ξi and IGa(a, b) denotes an inverted gamma distribution such
that if X ∼ IGa (a, b), then X−1 ∼ Ga (a, b).

• Finally, the conditional pdf for ν only depends on ω and is given by

[ν |ω ] ∝ exp

{
−ν

2

[
c + 11>n diag−1 (ω) 11n +

n∑

i=1

ln (ωi)

]
+

nν

2
ln

(ν

2

)
− n ln Γ

(ν

2

)}
,

where Γ (z) =
∫∞
0 tz−1 exp(−t)dt.

To obtain a sample of [ν |ω ], we make a step of the MH algorithm with instrumental
distribution Ga(a∗, b∗), where a∗ = b∗ν(t−1) + 1,

b∗ =
n + c +

∑n
i=1

(
ω−1

i + ln (ωi)
)

2

and ν(t−1) is the sample from the previous step. More details about the Metropolis-within-
Gibbs (MwG) algorithm can be found in Robert and Casella (1999, Section 7.3).

5. Applications

In this section, we illustrate the estimation of the influence measures given in Section 3
using two real data sets. For both applications, the samples from the unperturbed posterior
distributions were obtained using the MwG algorithm explained in the previous section.
We obtained 1,001,000 samples from the posterior distribution discarding the first 1,000
iterations. A lag of 10 observations was selected to avoid autocorrelation. This means that
a net sample size of 100,000 was used in each sampling process.



28 I. Vidal and L.M. Castro

5.1 Concrete compressive strengths data

These data were taken from Wellman and Gunst (1991) and consist of 41 pairs of observed
(yi, xi) values, where the yi and xi represent the measured compressive strengths of concrete
taken 28 days and 2 days after pouring, respectively; see Table 1. This data set is well-
known in the literature.

Table 1. Concrete compressive strength measurements in pounds per square inch (psi).

Sample Day 28 Day 2 Sample Day 28 Day 2 Sample Day 28 Day 2
1 4470 2830 15 4690 2985 29 4650 3335
2 4740 3295 16 4880 3135 30 4680 3800
3 5115 2710 17 3425 2750 31 5165 2680
4 4880 2855 18 4265 3205 32 5075 3760
5 4445 2980 19 4485 3000 33 4710 3605
6 4080 3065 20 5220 3035 34 4200 2005
7 5390 3765 21 7695 4245 35 4645 2495
8 4045 3265 22 3330 1635 36 4725 3205
9 4370 3170 23 4065 2270 37 4695 2060
10 4955 2895 24 4715 2895 38 5470 3425
11 3835 2630 25 4735 2845 39 4330 3315
12 4290 2830 26 3605 2205 40 4950 3825
13 4600 2935 27 4670 3590 41 4460 3160
14 4605 3115 28 4720 3080

The measured strengths of concrete differ from their respective true underlying values
due to various sources of measurement errors. Thus an appropriate model for the data is
given by Equations (1) and (2). Figure 1 shows a scatter plot of the data set and four lines
fitted from different methods. Wellman and Gunst (1991), Abdullah (1995) and Vidal et
al. (2007) used these data to evaluate the performance of various diagnostic techniques in
normal MEM. Similar to Galea et al. (2002a), but from a Bayesian perspective, we use
these data to detect influential observations in MEM with Student-t errors. Wellman and
Gunst (1991), Abdullah (1995), Galea et al. (2002a) and Vidal et al. (2007) concluded
that observation 21 exhibits a strong influence on parameters estimates.
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Figure 1. Concrete compressive strengths, in pounds per square inch, at 2 and 28 days.
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For the sake of illustration, we assume that expert knowledge leads to the following
informative priors:

• β|φ1 ∼ N2

(
(1500, 1)>, φ−1

1

(
5002, 4

)
I2

)
;

• φ1 ∼ Ga
(
1, 106

)
;

• φ3 ∼ Ga
(
1, 105

)
,

• µ|φ3 ∼ N
(
3000, φ−1

3 103
)
; and

• ν ∼ Ga (1, 1).

The influence measures based on the posterior Bayes risk and the J-distance assign greater
influence to observations 21, 22, 37 and 34 (in that order); see Figure 2. However, the L1-
distance and the Kullback-Leibler divergence assign greater influence to observations 21,
22 and 37 (in that order) and, the χ2-divergence assigns greater influence to observations
21, 22, 37, 34 and 30 (in that order); see Figure 2. From this analysis, the most influential
observations are 21, 22 and 37 coinciding with the observations analyzed by Wellman and
Gunst (1991), Abdullah (1995), Galea et al. (2002a) and Vidal et al. (2007).
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Figure 2. Influence measures for each observation for concrete compressive strengths data.

Figure 3 shows the influences for all subsets of two observations. We can see that there
are many pairs of observations with great influence on the posterior distribution. But, the
pairs with the biggest influence have the form (21, ·) according to M1, M2 and q-influences.
That suggests observation 21 is an influential case followed by the observation 22.
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Figure 3. Influence measures for all subsets of two observations for concrete compressive strengths data.

5.2 Serum kanamycin data

These data were taken from Kelly (1984) and consist of simultaneous pairs of measurements
of serum kanamycin levels in blood samples drawn from twenty premature babies; see Table
2.

Table 2. Serum kanamycin levels in blood samples.

Baby Heelstick Catheter
1 23.0 25.2
2 33.2 26.0
3 16.6 16.3
4 26.3 27.2
5 20.0 23.2
6 20.0 18.1
7 20.6 22.2
8 18.9 17.2
9 17.8 18.8
10 20.0 16.4
11 26.4 24.8
12 21.8 26.8
13 14.9 15.4
14 17.4 14.9
15 20.0 18.1
16 13.2 16.3
17 28.4 31.3
18 25.9 31.2
19 18.9 18.0
20 13.8 15.6
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One of the measurements was obtained by a heelstick method (x) and the other by using
an umbilical catheter (y). Since there is a measurement error in both methods, the model
given by Equations (1) and (2) seems to be appropriated for escribing these data. Figure
4 shows a scatter plot of the data set and four lines fitted from different methods.
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Figure 4. Serum Kanamycin levels in blood samples data.

As in the previous case, and for the sake of illustration, we assume that expert knowledge
leads to the following informative priors:

• β|φ1 ∼ N2

(
(1500, 1)> , φ−1

1

(
5002, 4

)
I2

)
;

• φ1 ∼ Ga
(
1, 106

)
;

• φ3 ∼ Ga
(
1, 105

)
;

• µ|φ3 ∼ N
(
3000, φ−1

3 103
)
; and

• ν ∼ Ga (1, 1).

The influence measures based on the posterior Bayes risk assigns greater influence to
observations 2, 18, 16 and 17; see Figure 5. However, the L1 -distance, the Kullback-
Leibler divergence and the J-distance assign greater influence to observations 2, 18 and
17 (in that order) and, the χ2-divergence assigns greater influence to observations 2, 18,
16 and 17 (in that order); see Figure 5. Therefore, the most influential observations are
2, 18 and 17. Kim (2000), Galea et al. (2002a) and Quintana et al. (2005) detected these
three observations as the most influential. Kelly (1984) and Abdullah (1995) mentioned
observation 16 too. We also determinate the influence of every pair of data. Again, many
pairs of data showed great influence. But, the pairs with the biggest influence are the
subset (17, 18) and those which form is (2, ·). That suggests observation 2 is an influential
case followed by the observations 18 and 17.
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Figure 5. Influence measures for each observation for serum kanamycin levels in blood samples data.

6. Final Remarks

The problem of detecting influential observations is an important step in data analysis.
There are several forms of assessing the influence of observation perturbation on parame-
ters estimation. In this work, we have detected influential observations in the independent
Student-t measurement error model with weak nondifferential error from a Bayesian point
of view. The influence measures presented in this work quantify the impact of any subset
of data on the posterior distributions of the structural parameters of an specific measure-
ment error model. These measures are easy to compute and allow to evaluate measure the
influence of any subset of data by using only one sample drawn from the posterior distri-
bution. These influence measures were applied to two well-known data sets. The obtained
results were similar to those found by other authors.
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