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Abstract

A new, nonparametric, approach to Bayesian robustness is presented. Whereas many
studies in Bayesian robustness have dealt with a parametric sampling distribution, con-
sidering classes of prior distributions on the parameters, here we assume that the sam-
pling distribution comes from a Dirichlet process with a parameter η = βα, with β > 0
and α being a probability measure, specified with uncertainty.
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1. Introduction

Parametric Bayesian robustness usually deals with uncertainty in the prior by modelling a
class Γ of probability measures on the parameter space. Extensive reviews of the literature
on the subject are presented, e.g., in Berger (1994) and Rios-Insua and Ruggeri (2000),
and we refer to them for a discussion of the robust Bayesian viewpoint.

In this paper, we are going to present a new, nonparametric, approach to Bayesian
robustness. In Bayesian nonparametrics, probability measures on the space (X ,A) are
chosen by a stochastic process, such as the Dirichlet process introduced by Ferguson (1973).
We suppose that it is impossible to specify exactly the parameter η of a Dirichlet process
P . As an example, considered in Ruggeri (1994a), let X be the real plane <2 and η be
proportional to a probability measure α for which only the marginals distributions can be
specified, i.e., α is in a Fréchet class, without any knowledge about the joint distribution.
Therefore, η being in a class Λ, we have a family of Dirichlet processes and, as in the
robust parametric approach, we study the behaviour of some quantity of interest and
compute its range as η varies in Λ. Some definitions and properties are provided in Section
2. Here, we are interested in the distance between Dirichlet processes (Section 3); in the
probability of some subspace of the space of all probabilities on (X ,A) (Section 4); in the
probability that set probabilities take certain values (Section 5) and, finally, in some Bayes
estimators (Section 6), e.g., of a random distribution function from P . The concentration
function (Cifarelli and Regazzini, 1987; Fortini and Ruggeri, 1994, 1995) will be very useful
in proving some results, especially in Section 7, where prior and posterior distances are
compared. A short discussion concludes the paper in Section 8.
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2. Definitions

We first present some definitions and results about the Dirichlet processes, the Fréchet
class in Bayesian nonparametrics and the concentration function.

Definition 2.1 Let X be a set and A be a σ-field of subsets of X . Let η be a finite,
nonnull, nonnegative, finite additive measure on (X ,A). A random probability measure P
on (X ,A) is a Dirichlet process on (X ,A) with parameter η, if for every k = 1, 2, . . ., and
measurable partition B1, . . . , Bk of X , the joint distribution of the random probabilities
(P(B1), . . . ,P(Bk)) is Dirichlet with parameters (η(B1), . . . , η(Bk)).

Ferguson (1973) proved the following result.

Theorem 2.2 Let P be a Dirichlet process on (<2,A) with parameter η = βα and
α(<2) = 1. Let Z1, . . . , Zn, be a sample of size n from P . Then, the conditional distribution
of P , given Z1, . . . , Zn, is a Dirichlet process with parameter η∗(x, y) = β∗α∗(x, y), where
β∗ = β + n and

α∗(x, y) =

βα(x, y) +
n∑
i=1

δZi(x, y)

β∗
,

and α∗(<2) = 1.

Consider the space <2 and the Borel σ-field A on it. Let F and G be two distributions
on < and let B denote the Borel σ-field on the real line.

Definition 2.3 The class of all bivariate distribution functions with given marginals F
and G is called the Fréchet class Γ(F,G).

Cifarelli and Regazzini (1987) introduced the concentration function of Π with respect
to (w.r.t.) Π0, where Π and Π0 are two probability measures on the same measurable space
(Θ,F). According to the Radon-Nikodym theorem, there is a partition {N,NC} ⊂ F of
Θ and a nonnegative function h on NC such that, ∀E ∈ F ,

Π(E) =
∫
E∩NC

h(θ)Π0(dθ) + Πs(E ∩N),

Π0(N) = 0, Πs(N) = Πs(Θ), where

Πa(·) =
∫
·∩NC

h(θ)Π0(dθ)

and Πs denote the absolutely continuous and the singular part of Π w.r.t. Π0, respectively.
Take h(θ) =∞ over all N and

H(y) = Π0 ({θ ∈ Θ: h(θ) ≤ y}) , cx = inf{y ∈ <: H(y) ≥ x}.

Finally, let Lx = {θ ∈ Θ: h(θ) ≤ cx} and L−x = {θ ∈ Θ: h(θ) < cx}.
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Definition 2.4 The function ϕ: [0, 1] → [0, 1] is said to be the concentration function
(c.f.) of Π w.r.t. Π0 if ϕ(x) = Π(L−x ) + cx{x − H(c−x )}, for x ∈ (0, 1), ϕ(0) = 0 and
ϕ(1) = Πa(Θ).

It is worth mentioning that the c.f. between finite measures, with equal total mass, could
be defined in a similar way.

The following theorem, proved in Cifarelli and Regazzini (1987), states that ϕ(x) sub-
stantially coincides with the minimum value of Π on the measurable subsets of Θ with
Π0-measure not smaller than x.

Theorem 2.5 If A ∈ F and Π0(A) = x, then ϕ(x) ≤ Πa(A). Moreover, if x ∈ [0, 1] is
adherent to the range of H, then Bx exists such that Π0(Bx) = x and

ϕ(x) = Πa(Bx) = min{Π(A): A ∈ F and Π0(A) ≥ x}. (1)

If Π0 is nonatomic, then Equation (1) holds for any x ∈ [0, 1].

Theorem 2.5 is relevant in applying the c.f. to robust Bayesian analysis. In fact, given
any x ∈ [0, 1], the probability, under Π, of all the subsets A with Π0-measure x, is such
that ϕ(x) ≤ Π(A) ≤ 1− ϕ(1− x).

A partial ordering of probability measures is possible by using the coefficients of diver-
gence considered in Ali and Silvey (1966) and Csiszár (1967), and defined by

ρ(Π, g) =
∫

[0,∞)
g(t)dHΠ(t) + Πs(Θ) lim

t→∞

g(t)
t
,

where g: [0,∞)→ < is continuous and convex, whereas HΠ and Πs are defined as before,
for any Π ∈ P, w.r.t. a fixed Π0 ∈ P.

Gini’s concentration ratio (Gini, 1914) given by

C(Π) = 2
∫ 1

0
{x− ϕ(x)} dx

and the index

G(Π) = sup
x∈[0,1]

{x− ϕ(x)}

proposed by Pietra (1915), which equals twice the variational distance

sup
A∈F
|Π(A)−Π0(A)|,

are obtained as particular cases of ρ(Π, g), taking, respectively,

g(t) =
1
2

∫
<
|t− u|dHΠ(u) +

1
2

ΠS(Θ) and g(t) = |t− 1|.

In addition, when Π is absolutely continuous w.r.t. Π0, the Kullback-Leibler index and the
χ2 divergence are obtained from ρ(Π, g) setting g(t) = t log(t) and g(t) = (t− 1)2.
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3. Distance Between Dirichlet Process

As the parameter η of a Dirichlet process varies in a class, a family of Dirichlet processes
is obtained and a sensitivity analysis could be performed about how “far” these processes
are from one another. The idea of measuring the distance between stochastic processes
is, of course, not new in literature. We simply mention Vajda (1990), where the Renyi
distance and the Kullback-Leibler divergence, both based on Hellinger integrals, were used
to evaluate the distances between distributions of regular Markov processes. Here, we
consider, as a distance between two Dirichlet processes, both the maximum Hellinger
distance and the maximum Kullback-Leibler divergence between the distributions, under
the two Dirichlet processes, of the probability of any subset A ∈ A. The interest in such
distributions follows, quite naturally, from the definition of a Dirichlet process in terms of
the distribution of random probabilities of partitions of A; see Definition 2.1.

3.1 Hellinger distance

Definition 3.1 Given the Dirichlet processes P and Q on (X ,A), their distance is given
by

dH(P,Q) = sup
A∈A

d(P (A), Q(A)),

where d(X,Y ) denotes the Hellinger distance between two random variables whose distri-
butions have densities p and q w.r.t. a dominating measure µ, i.e.,

d(X,Y ) =
{∫

(
√
p−√q)2 dµ

}1/2

.

Here, dH is actually a distance. In fact, it is symmetric and nonnegative. In addition,
dH(P,Q) = 0 if and only if the processes have the same parameters a.e. From Defini-
tion 2.1, it follows that, for any A ∈ A, P (A) and Q(A) are Beta distributed, with
parameters (η1(A), β − η1(A)) and (η2(A), β − η2(A)). The condition dH(P,Q) = 0 im-
plies d(P (A), Q(A)) = 0, for all A ∈ A, so that the two Beta distributions coincide and
η1(A) = η2(A), for all A ∈ A and the two Dirichlet processes have the same parameter η.
Viceversa, two Dirichlet processes with the same parameter are such that dH(P,Q) = 0.
Finally, given the processes P , Q and R, the triangle inequality is proved by

dH(P,Q) ≤ sup
A∈A
{d(P (A), R(A)) + d(R(A), Q(A))} ≤ dH(P,R) + dH(R,Q).

The concise notation fη,β denotes, for an arbitrary, but fixed A ∈ A, the density of a Beta
distributed random variable with parameters (η, β − η), where η = η(A) and β = η(X )).
When possible, the subscript β will be omitted, whereas a similar notation will be used
later for a Dirichlet distribution. Given two measures η1 and η2, such that η1(X ) = β1 and
η2(X ) = β2, respectively, it can be easily shown that

d(P (A), Q(A)) =
√

2 (1− Y (η1(A), η2(A)))1/2 ,
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where

Y (η1, η2) =
∫ 1

0

√
fη1,β1(y)fη2,β2(y)dy

=
Γ((η1 + η2)/2)Γ((β1 + β2)/2− (η1 + η2)/2)√

Γ(η1)Γ(β1 − η1)Γ(η2)Γ(β2 − η2)
×
√

Γ(β1)Γ(β2)
Γ((β1 + β2)/2)

.

The distance dH(P,Q) can be expressed by means of the concentration function described
in Section 2.

Without loss of generality, suppose that β2 ≤ β1. We consider the c.f. ϕ1 of η2 w.r.t. η1,
but we should notice that would have obtained the same result by considering the c.f. ϕ2 of
η1 w.r.t. η2. It can be shown that it is false, in general, that ϕ1(t) = ϕ2(t),∀t ∈ [0, 1], but
here it is possible to prove that Y (x, ϕ1(x)) = Y (ϕ1(x), β2−ϕ2(β1−ϕ1(x))). Furthermore,
it can be proved that Y (x, β − ϕ(β − x)) = Y (β − x, ϕ(β − x)), so that it is sufficient to
consider Y (x, ϕ(x)).

Theorem 3.2 We have that

dH(P,Q) =
√

2
(
1− inf

0≤x≤β1

Y (x, ϕ(x))
)1/2

,

where ϕ is the c.f. of η2 w.r.t. η1.

Proof Consider Ax = {A ∈ A: η1(A) = x}, for 0 ≤ x ≤ β1. We want to find A ∈ Ax,
which minimises Y (x, η2(A)). Take

Zx(η2(A)) = Y (x, η2(A))

√
Γ(η1(A)) Γ(β1 − η1(A)) Γ((β1 + β2)/2)√

Γ(β1) Γ(β2)
.

It follows that

∂Zx
∂η2(A)

=
Zx(η2(A))

2
× Tx(η2(A)),

where Ψ(x) = ∂ log(Γ(x))/∂x and

Tx(η2(A)) = Ψ
(
η1(A) + η2(A)

2

)
−Ψ

(
β1 + β2

2
− η1(A) + η2(A)

2

)
−Ψ(η2(A)) + Ψ(β2 − η2(A)).

It can be shown that

lim
η2(A)→0

∂Zx
∂η2(A)

= +∞

and

lim
η2(A)→β2

∂Zx
∂η2(A)

= −∞.
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From Abramowitz and Stegun (1972, pp. 259-260), it follows that

Ψ(z) =
∫ ∞

0

[
e−t

t
− e−zt

1− e−t

]
dt and Ψ

′
(z) =

∫ ∞
0

te−zt

1− e−t
1 dt.

Therefore

Ψ
(
η1(A) + η2(A)

2

)
−Ψ(η2(A)) =

∫ ∞
0

e−η2(A)t{1− e−
η1(A)−η2(A)

2 }
1− e−t

dt

and

Ψ(β2 − η2(A))−Ψ
(
β1 + β2

2
− η1(A) + η2(A)

2

)
=

∫ ∞
0

e−(β2−η2(A))t
{
e−((β1−η1(A))/2−(β2−η2(A))/2)t − 1

}
1− e−t

dt.

Looking for the above quantities within brackets to be positive for all t, it follows that
∂Zx/∂η2(A) is positive for η2(A) < β2−β1 +η1(A) and negative for η2(A) > η1(A). When
β2 − β1 + η1(A) ≤ η2(A) ≤ η1(A), then it can be shown that

∂Tx
∂η2(A)

=
{

1
2

Ψ
′
(
η1(A) + η2(A)

2

)
−Ψ

′
(η2(A))

}
+
{

1
2

Ψ
′
(
β1 + β2

2
− η1(A) + η2(A)

2

)
−Ψ

′
(β2 − η2(A))

}
is negative. Then, ∂Zx/∂η2(A) = 0 at a unique point, which is the unique maximum for
Zx(η2(A)) (e.g., η2(A) = x if β1 = β2) and, since Zx is a continuous function, it reaches
a minimum at either infA∈Ax η2(A) or supA∈Ax η2(A), i.e., as discussed in Section 2, at
either ϕ(x) or β2 − ϕ(β1 − x). The same argument can be repeated for any x ∈ [0, β1]. �

Therefore, the distance between two processes is found by computing the c.f. ϕ(x) and
then minimising the function Y (x, ϕ(x)), as in the following examples.

Example 3.3 Let P and Q be Dirichlet processes on (<,B), whose parameters have
densities η1 and η2 such that η2(x) = γη1(x) on a subset A with measure 0.5 under η1 and
η2(x) = (2− γ)η1(x) on AC , with 0 ≤ γ ≤ 1 and η1(<) = 1 = η2(<). Therefore, the c.f. of
η2 w.r.t. η1 is given by

ϕ(x) =

{
γx, 0 ≤ x ≤ 0.5;

(2− γ)x+ γ − 1, 0.5 ≤ x < 1.

By proving that the expected value ExL = Ψ(x)−Ψ(β) and assuming for simplicity β = 1,
then, from the well-known result Ψ(x) − Ψ(1 − x) = −π cotπx, and some, not trivial,
algebraic manipulations, it follows that ∂Y (x, ϕ(x))/∂x is negative (positive) for x ≤ 0.5
(x > 0.5), so that Y (x, ϕ(x)) achieves its minimum value at x = 0.5. Finally, it can be
shown that limγ→0 Y (x, ϕ(x)) = 0, so that dH(P,Q) =

√
2.
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Distances are computed for different values of γ and shown in Table 1.

Table 1. Hellinger distance.

γ 0.0001 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Distance 1.40 0.98 0.79 0.65 0.53 0.42 0.33 0.24 0.16 0.08 0.0

Example 3.4 Let P and Q be Dirichlet processes whose parameters η1 and η2 have
distributions E(1) and G(2, 1), respectively. It can be proved that the c.f. of η2 w.r.t. η1 is
given by ϕ(x) = x + (1− x) log(1− x), and numerically shown that dH(P,Q) ≈

√
2. The

result is not surprising since the c.f. tells us that there exist subsets whose probability is
very small under η1 and very large under η2.

The most interesting application is about classes Π of Dirichlet processes Q determined
by their parameters η being in a class Γ. Let η0 be the parameter of a baseline Dirichlet
process P0. Let Λ the class of all c.f.’s of the parameters η ∈ Γ w.r.t. η0. The following
theorem simplifies the search of the distance between the process P0 and the other processes
Q. Its proof is omitted because it is very similar to that of Theorem 3.2.

Theorem 3.5 For any x ∈ [0, 1], define ϕ̂(x) = inf
ϕ∈Λ

ϕ(x). Then, it follows that

sup
Q∈Π

dH(P0, Q) =
√

2
(
1− inf

0≤x≤β1

Y (x, ϕ̂(x))
)1/2

.

The class Γ could be one of those described by Fortini and Ruggeri (1994). That is, par-
ticular cases of ε-contaminations, total variation neighbourhood, density ratio and density
bounded. There, such neighbourhoods of a given probability measure η0 were defined by
considering all the probability measures whose c.f. w.r.t. η0 was not below a given mono-
tone nondecreasing, continuous, convex function g(x) with g(0) = 0 and g(1) ≤ 1. It is
even possible to consider measures with finite mass β, providing that g(β) ≤ β.

Example 3.6 Let η be in the ε-contaminated class Γε = {η: η = (1− ε)η0 + εγ, γ ∈M},
where M is the class of all measures with mass β. Such a class is a neighbourhood of η0

described by Fortini and Ruggeri (1994) by taking g(x) = (1− ε)x. Here,

Y (x, (1− ε)x) =
Γ((1− ε/2)x)Γ(β − (1− ε/2)x)√

Γ(x)Γ(β − x)Γ((1− ε)x)Γ(β − (1− ε)x)
,

so that limx→0 Γ(x) = ∞ implies that limx→β Y (x, (1 − ε)x) = 0 and, therefore, there
exists Q such that dH(P0, Q) =

√
2.

Example 3.7 Let η be in the total variation neighbourhood of η0, which corresponds to

g(x) =

{
0, 0 ≤ x ≤ ε;

x− ε, ε < x ≤ β.

Given 0 < x < ε, then it follows that limt→0 Y (x, t) = 0 implies that there exists Q such
that dH(P0, Q) =

√
2.



58 F. Ruggeri

The results are not surprising because the maximum distance is achieved by considering a
probability measure Q, which is not absolutely continuous w.r.t. P0, as shown by g(1) < β;
see Fortini and Ruggeri (1995), for details. A lesser distance is obtained when we consider
the class of all probability measures whose c.f.’s are not below the one described in Example
3.3. The same distances in Table 1 are now the maximum distances in the class of the
Dirichlet processes.

Finally, it is worth mentioning the following result about the distance between processes
when considering random vectors P (A1), . . . , P (Ak) and Q(A1), . . . , Q(Ak), which shows
that the distance between processes increases as we consider finer partitions. Let fη1,...,ηk
be the density of a Dirichlet distributed random variable with parameters (η1, . . . , ηk). Let
{B1, . . . , Bk} be a measurable partition of A and {B10, B11} be a measurable partition of
B1. It follows that P (B1), . . . , P (Bk) and Q(B1), . . . , Q(Bk) are Dirichlet distributed with
densities fη1,...,ηk and fγ1,...,γk , respectively.

Theorem 3.8 We have that

sup
{B1,...,Bk}

d({P (B1), . . . , P (Bk)}, {Q(B1), . . . , Q(Bk)})

is a nondecreasing function of k.

Proof It follows from

∫ 1
0

√
fη10,η11,...,ηkfγ10,γ11,...,γkdy∫ 1
0

√
fη1,...,ηkfγ1,...,γkdy

=
∫ 1

0

√
fη10,η11fγ10,γ11dy ≤ 1.

�

3.2 Kullback-Leibler divergence

The distance between Dirichlet processes could be measured by means of other indices,
like the coefficients of divergence. In particular, we consider now the Kullback-Leibler
divergence and we show that the results are not very different from the previous ones.
Such an index is not a proper distance because it is not symmetric, but it can be useful
when interested in measuring distances of measures from a given one.

Definition 3.9 Given the Dirichlet processes P and Q on (X ,A), their distance is given
by

dKL(P,Q) = sup
A∈A

d(P (A), Q(A)),

where d(X,Y ) denotes the Kullback-Leibler divergence between two random variables
whose distributions have densities p and q w.r.t. a dominating measure µ, i.e.,

d(X,Y ) =
∫
p log

(
p

q

)
dµ.
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The quantity d(P (A), Q(A)) = Y (η1(A), η2(A)) equals

∫ 1

0
fη1(A)(y) log

(
fη1(A)(y)
fη2(A)(y)

)
dy =

∫ 1

0

yη1(A)−1(1− y)β−η1(A)−1Γ(β)
Γ(η1(A))Γ(β − η1(A))

× log

(
yη1(A)−1(1− y)β−η1(A)−1Γ(β)Γ(η2(A))Γ(β − η2(A))
yη2(A)−1(1− y)β−η2(A)−1Γ(η1(A))Γ(β − η1(A))Γ(β)

)
dy

= − log(Γ(η1(A)))− log(Γ(β − η1(A))) + log(Γ(η2(A)))

+ log(Γ(β − η2(A))) + (η1(A)− η2(A))

×{Ψ(η1(A))−Ψ(β − η1(A))}.

We now compute the distance between any Dirichlet process Q with parameter η2 from a
baseline Dirichlet process P with parameter η1.

Theorem 3.10 We have that

dKL(P,Q) = sup
0≤x≤β

Y (x, ϕ(x)),

where ϕ is the c.f. of η2 w.r.t. η1.

Proof Consider Ax = {A ∈ A : η1(A) = x}, 0 ≤ x ≤ β. We want to find A ∈ Ax, which
maximises Y (x, η2(A)). It follows that

∂Y

∂η2(A)
=

Γ
′
(η2(A))

Γ(η2(A))
− Γ

′
(β − η2(A))

Γ(β − η2(A))
− Eη1(A)L,

where EηL denotes the expected value of L = log(T/(1− T )), when T is beta distributed
with parameters (η, β − η). Furthermore,

∂2Y

∂η2(A)
=

Γ
′′
(η2(A))Γ(η2(A))−

(
Γ
′
(η2(A))

)2
(Γ(η2(A)))2 −

−
−Γ

′′
(β − η2(A))Γ(β − η2(A)) +

(
Γ
′
(β − η2(A))

)2
(Γ(η2(A)))2

= Varη2(A) log(T ) + Varβ−η2(A) log(T ) > 0.

The convexity of Y implies that Y takes its maximum value at either
infA∈Ax η2(A) or supA∈Ax η2(A), i.e., as discussed in Section 2, at either ϕ(x) or
β − ϕ(β − x). The same argument can be repeated for any x ∈ [0, β]. Since it can be
proved that Y (x, β − ϕ(β − x)) = Y (β − x, ϕ(β − x)), it follows that it is sufficient to
consider Y (x, ϕ(x)). �

Therefore, the distance between two processes is found by computing the c.f. ϕ(x) and
then maximising the function Y (x, ϕ(x)), as in the following examples.

Example 3.11 (Example 3.3 continued) For x ≤ 0.5 and β = 1, it follows that

Zx(γ) =
∂Y (x, ϕ(x))

∂x
= −γπ cot(γπx) + γπ cot(πx) +

(1− γ)π2x

sin2(πx)
,
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so that Zx(1) = 0 for all x ∈ [0, 1]. In addition,

∂Zx(γ)
∂γ

= −π cot(γπx) +
γπ2x

sin2(γπx)
+ π cot(πx)− π2x

sin2(πx)
,

which equals 0 at γ = 1. The quantity within brackets in

∂2Zx(γ)
∂γ2

=
2π2x

sin3(γπx)
{sin(γπx)− γπx cos(γπx)}

is always positive (obvious for γx > 1/2, whereas otherwise we should look at t < tan(t),
for 0 ≤ t < π/2).

Therefore, ∂2Zx(γ)/∂γ2 > 0 implies that ∂Zx(γ)/∂γ is increasing and, because of
{∂Zx(γ)/∂γ}γ=1 = 0, that it negative for γ < 1. As a consequence, then Zx is decreasing
as a function of γ and, because of Zx(1) = 0, it is positive for any γ ∈ (0, 1), given any
x ∈ [0, 1]. Thus, ∂Y (x, ϕ(x))/∂x is positive for x ≤ 0.5, while it can be similarly proved
that it is negative for x > 0.5, so that Y (x, ϕ(x)) achieves its maximum value at x = 0.5.
Finally, it can be shown that limγ→0 Y (x, ϕ(x)) =∞, so that dKL(P,Q) =∞.

Distances are computed for different values of γ and shown in Table 2.

Table 2. Kullback-Leibler divergence.

γ 0.0001 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Distance 8.76 1.9 1.2 0.79 0.53 0.35 0.21 0.12 0.05 0.01 0.0

Example 3.12 (Example 3.4 continued) It can be shown that dKL(P,Q) is unbounded
also in this case.

As for Hellinger distance, we can prove a theorem similar to Theorem 3.5, which simplifies
the computation of the distance when considering the class Λ of all c.f.’s of the parameters
η ∈ Γ w.r.t. η0.

Theorem 3.13 For any x ∈ [0, 1], define ϕ̂(x) = inf
ϕ∈Λ

ϕ(x). Then, it follows that

sup
Q∈Π

dKL(P0, Q) = sup
0≤x≤β

Y (x, ϕ̂(x)).

As before about the Hellinger distance, the class Γ could be described by means of the
c.f.

Example 3.14 (Example 3.6 continued) For the ε-contaminated class with β = 1, we
obtain that limx→β Y (x, (1− ε)x) =∞ and therefore there exists Q such that dH(P0, Q) =
∞ (the proof is the same as in Example 3.3).

Example 3.15 (Example 3.7 continued) In the total variation neighbourhood of η0, it
can be proved that, given 0 < x < ε, then limt→0 Y (x, t) = +∞, so that there exists Q,
such that dKL(P0, Q) =∞.
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4. Distance Between Distributions of Probabilities

Whereas the parametric robust Bayesian approach is often interested in finding upper and
lower bounds on posterior set probabilities and expectations in the parameter space, the
nonparametric approach must deal with the changes in the distribution of probabilities
and expectations in the sample space. In this paper, we focus only on set probabilities,
simply mentioning that ranges of distributions could be found for all random functionals,
e.g., for those for which Cifarelli and Regazzini (1990) have computed the distribution
functions.

Lemma 4.1 Let 0 < η < β. Then, the function

Y (η) =

∫ x
0 y

η−1(1− y)β−η−1dy∫ 1
0 y

η−1(1− y)β−η−1dy

is strictly decreasing in η.

Proof Let L(y) = log (y/(1− y)) and fη(y) = yη−1(1− y)β−η−1. Then,

Y
′
(η) =

Zη(x)(∫ 1
0 fη(y)dy

)2 ,

with

Zη(x) =
∫ x

0
L(y)fη(y) dy

∫ 1

x
fη(y) dy −

∫ 1

x
L(y)fη(y) dy

∫ x

0
fη(y) dy.

For any η ∈ (0, β), it follows that ∂Zη(x)/∂x = 0 inside (0, 1) at the unique point x̂η such
that L(x̂η) = EηL, being x̂η a minimum, since Zη(1/2) < Zη(0) = Zη(1) = 0. It follows
that, for all η’s, Zη is negative, except for x = 0, 1, so that Y (η) is strictly decreasing in
η. �

Lemma 4.2 Let 0 < η1, η2 < β and P and Q be Beta distributions with parameters
(η1, β − η1) and (η2, β − η2), respectively, and densities fη1 and fη2 . Then, the c.f. of Q
w.r.t. P can be computed, for any y ∈ [0, 1], as

x =
∫ y

0
fη1(t)dt, ϕ(x) =

∫ y

0
fη2(t)dt η2 ≥ η1,

x =
∫ 1

y
fη1(t)dt, ϕ(x) =

∫ 1

y
fη2(t)dt η2 ≤ η1.

Proof It can be easily shown that the likelihood ratio is given by

h(θ) =
fη2(θ)
fη1(θ)

= K

(
θ

1− θ

)η2−η1
,

where K is a constant independent of θ. As h(θ) is increasing (decreasing) for η2 > η1

(η2 < η1), it follows, using the same notation as in Section 2, that Lx has the form [0, yx]
([yx, 1]), for all x ∈ [0, 1]. �
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We can now consider the distribution function of the probability P (A) of A ∈ A, when
P is chosen from a Dirichlet process. Suppose there exists a baseline process P0 with
parameter η0 and a class of processes Q with parameters η in Γ and η0 ∈ Γ. We compare
the distributions of P (A) under the processes Q with the one under P0 by using their
c.f.’s, as presented in Fortini and Ruggeri (1994). For each x ∈ [0, 1], we look for the lowest
c.f. ϕ̂(x), i.e., for the minimum probability, under the distributions of Q(A), of all subsets
having probability x under the distribution of P0(A).

Theorem 4.3 Let Q1 and Q2 be the Dirichlet processes with parameters η1 and η2,
respectively, such that η1(A) = infη∈Γ η(A) and η2(A) = supη∈Γ η(A). Let ϕi be the c.f. of
Qi(A) w.r.t. P0(A), i = 1, 2, then, for all x ∈ [0, 1], ϕ̂(x) = min{ϕ1(x), ϕ2(x)}.

Proof Consider any η ∈ Γ such that η(A) > η0(A). Let Q be the corresponding Dirichlet
process, then it follows from Lemma 4.2 that the c.f. of Q(A) w.r.t P0(A) is given by

x =
∫ y

0
fη0(t)dt and ϕ(x) =

∫ y

0
fη(t)dt.

From Lemma 4.1, it follows that
∫ y

0 fη(t)dt is decreasing in η, so that it is minimised by
η2(A). A similar argument can be applied to η’s such that η(A) < η0(A). �

Example 4.4 Take the ε-contaminated class Γ = {η = (1− ε)η0 + εQ,Q ∈ Mβ}, where
Mβ is the class of all finite measures Q such that Q(X ) = η(X ) = β. In this case, Q1

and Q2 are such that η1(A) = 0 and η2(A) = β, respectively. It follows from Theorem
2.2 that Q1(A) = 0 a.s. and Q2(A) = β a.s., i.e., Q1(A) and Q2(A) are Dirac measures
concentrated at 0 and β, respectively. Therefore, their c.f.’s w.r.t. P0(A) are such that
ϕ1(x) = ϕ2(x) = ϕ̂(x) = 0, for all x ∈ [0, 1].

The same ϕ̂ is obtained if we consider the parameters η and η0 updated after observing
a sample Z1 of size 1 (extension to larger sample is trivial). If Z1 ∈ A, then the posterior
Q∗2(A) is a Dirac measure concentrated at β+1. Otherwise, the posterior Q∗1(A) is a Dirac
measure concentrated at 0. In both cases, the corresponding c.f. w.r.t. the updated η∗0 is
equal to zero everywhere.

Example 4.5 Consider all the parameters η = β γ, for β > 0, with the probability
measure γ in the Fréchet class Γ(F,G) and, as a baseline parameter, any η0 = βγ0 with
γ0 in Γ, e.g., the independent one with joint distribution F (x)G(y). Take the subset
A = (−∞, x] × (−∞, y], then it follows that Q1 and Q2 are such that η1(A) = βW (x, y)
and η2(A) = βM(x, y). Update η and η0 after observing a sample of size n, then the
updated Q∗1 and Q∗2 are such that η∗1(A) = (β + n)Ŵ (x, y) and η∗2(A) = (β + n)M̂(x, y).

5. Distance Between Sets of Probability Measures

In this section, we compare the probabilities given by a class of Dirichlet processes to some
subspaces of the space P of all the probability measures defined on the space (X ,A). Given
the subsets A ∈ A and B ∈ B, where B is the Borel σ-field on [0, 1], consider the subspace
Γ = {Π ∈ P: Π(A) ∈ B} . Let P be a Dirichlet process on (X ,A) with parameter η, then
the random probability P(A) is beta distributed with parameters (η(A), β − η(A)) and
density fη(A). The following result can therefore be easily proved.

Theorem 5.1 We have that

P(Γ) =
∫
B
fη(A)(x)dx.
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More generally, it is possible to consider a measurable partition A1, . . . , Ak of X , and
the measurable subsets B1, . . . , Bk in B, and define the class

Γ = {Π ∈ P: Π(Ai) ∈ Bi, i = 1, . . . , k} .

From Definition 2.1, it follows that the joint distribution of the random probabil-
ities (P(A1), . . . ,P(Ak)) is Dirichlet with parameters (η(A1), . . . , η(Ak)) and density
fη(A1),...,η(Ak). The following result can therefore be easily proved.

Theorem 5.2 We have that

P(Γ) =
∫
B1×...×Bk

fη(A1),...,η(Ak)(x1, . . . , xk) dx1 . . . dxk.

It should be observed that Theorem 5.1 is a special case of Theorem 5.2, when k = 2, but
it has been presented separately to have a handy reference in the forthcoming examples.

Subsets of probability measures can be defined by means of the random functionals con-
sidered by Cifarelli and Regazzini (1990), who provide the distribution M of the random
functional

Yψ =
∫
<
ψ(x) P(dx).

We can now consider the class Γ = {Π ∈ P: Yψ ∈ B} and we get

P(Γ) =
∫
B
dM(x). (2)

Consider now a family R of Dirichlet processes, where the parameter η belongs to a
class ∆. Like in the parametric Bayesian robust analysis, the sensitivity to the changes
in η is measured by considering upper and lower bounds on the probabilities of subsets
of the space of all probabilities. In particular, it is possible to consider α in the Fréchet
class Γ(F,G), observing that Equation (2) does not apply to such case because it holds
only for measures on <. Because of the nature of the Dirichlet process, it is possible to
define some classes of probability measures Π = {P: P(A) ∈ B}, where A ∈ A and B is
a Lebesgue measurable subset in [0, 1]. Similar classes could be defined by asking either
that the random probabilities of a finer partition of X belong to some subset or the ran-
dom functional, considered by Cifarelli and Regazzini (1990), takes value on some subset.
Being P(A) beta distributed, it is easy to compute the probability of Π. As in parametric
robustness, it is worthwhile to compute upper and lower bounds on the probability P(Π).

As an example, we could take Π = {P: P(A) ≤ x} and the parameter η of the Dirichlet
process in a class Γ, so that

P(Π) =

∫ x
0 y

η(A)−1(1− y)β−η(A)−1 dy∫ 1
0 y

η(A)−1(1− y)β−η(A)−1 dy
.

Applying Lemma 4.1, it follows that upper and lower bounds on P(Π) are achieved for
η(A) equal to infη∈Γ η(A) and supη∈Γ η(A), respectively. Another interesting case is given
by A = (∞, y), so that we get a class of random distribution functions {F : F (y) < x}. For
example, for x = 1/2, we have the class of all the distributions whose median is greater
than y. Bounds can be easily computed for the Fréchet class described in Example 4.5,
too.
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6. Distance Between Bayes estimators

In the literature on Bayesian nonparametrics, many Bayes estimators of quantities of
interest have been presented. It could be attractive to investigate how much they change as
the parameter η of a Dirichlet process varies in a class Γ. This problem can be reduced to a
usual one in parametric robustness. Consider the estimation of the mean and the estimation
of a distribution function, both under squared loss, solved in Ferguson (1973). We consider
the no-sample problem, being similar to the one with data. The Bayes estimator of the
mean is given by

∫
< x dα(x) and η could be in most of the classes considered in the

parametric literature, for which methods for computing bounds are well known. As an
example, let the density η be bounded within the densities l and u. Then, the upper
bound on the Bayes estimator is given by η̂ ≡ l on (−∞, x] and η̂ ≡ u on (x,∞), with
x being determined by η̂(<) = η(<). In the Fréchet class about Z = (X,Y ), the Bayes
estimators of variance and means of X and Y are constant; see Ruggeri (1994a, Section
4.1.2). We are thus facing the nice situation of having a large class, say Γ(F,G), in which
robustness is achieved. Upper and lower bounds on the covariance have been found too in
Ruggeri (1994a, Section 4.1.2).

Following a suggestion in Ruggeri (1994b), it could be checked if the Bayes estimator
of the distribution, say η(−∞, x)/η(<), is within a prespecified band, maybe around a
baseline distribution function. In the Fréchet class, bounds are given by Ŵ and M̂ .

7. Comparing Prior and Posterior Distances

So far, we have measured the distance between quantities of interest, presenting results
which are valid both before and after observing a sample. Now, we want to check if the
sample influences the above distances, e.g., reducing them a posteriori.

First of all, it is worth considering the coefficient of divergence

ρ(η, g) =
∫

[0,∞)
g(t) dHη(t) + ηs(Θ) lim

t→∞

g(t)
t

described in Section 2, when applied to compare the distance between a parameter η ∈ Γ
and a baseline η0. It follows that prior and posterior distances coincide for most of the
well-known indices (Kullback-Leibler, χ2-divergence and Pietra) but not for Gini’s one,
that is for all indices for which g(1) = 0, i.e., which compare probability measures giving
no weight where the two measures coincide.

Theorem 7.1 Let ρ(η, g) be the coefficient of divergence of η w.r.t. η0 and ρ(η∗, g) be the
coefficient of divergence of η∗ w.r.t. η∗0, updated parameters after observing a sample of
size n. Then, it follows that

ρ(η∗, g) = ρ(η, g) + ng(1).

Proof Using the notations described in Section 2, we know that

H(y) = η0 ({θ ∈ Θ: h(θ) ≤ y}) and cx = inf{y ∈ <: H(y) ≥ x},
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whereas

H∗(y) = η∗0 ({θ ∈ Θ : h(θ) ≤ y}) =

{
H(y), 0 ≤ x < 1;

H(y) + n, x ≥ 1;

and

c∗x(x) = inf{y ∈ <: H∗(y) ≥ x} =


c(x), x < H(1);

1, H(1) ≤ x ≤ H(1) + n;

c(x− n), x > H(1) + n.

The result is proved by observing that

ηs(Θ) = η∗s(Θ) and
∫

[0,∞)
g(t)dH∗(t) =

∫
[0,∞)

g(t)dH(t) + ng(1).

�

Consider now the distance between Dirichlet processes as described in Section 5. As
expected, any sample decreases such a distance. In the following, we suppose that data
come from the “true” distribution η̃ and that the support of η̃ contains the support of the
parameters of the Dirichlet processes.

Theorem 7.2 We have that dH(P ∗, Q∗) < dH(P,Q), where P ∗ and Q∗ are the Dirichlet
processes obtained by updating the processes P and Q after observing a sample of size n.

Proof We consider a sample of size 1 because the case n is obtained by reiteratively
applying the proof for the case n = 1. We do not consider the case η1(A) = η2(A), which
gives a null distance, both a priori and a posteriori. We prove, first of all, that

Y (η1(A) + δZ1(A), η2(A) + δZ1(A)) > Y (η1(A), η2(A)),

where Y (η1(A), η2(A)) =
∫ 1

0

√
fη1(A)(y)fη2(A)(y)dy. Note that, in fact,

Y (η1(A) + δZ1(A), η2(A) + δZ1(A))
Y (η1(A), η2(A))

=
Γ((η1(A) + η2(A))/2 + δZ1(A))

Γ((η1(A) + η2(A))/2)

×Γ(β + 1− (η1(A) + η2(A))/2− δZ1(A))
Γ(β − (η1(A) + η2(A))/2)

×

√
Γ(η1(A))

Γ(η1(A) + δZ1(A))
Γ(β − η1(A))

Γ(β + 1− η1(A)− δZ1(A))
Γ(η2(A))

Γ(η2(A) + δZ1(A))

×

√
Γ(β − η2(A))

Γ(β + 1− η2(A)− δZ1(A))
.

The above quantity equals

β − (η1(A) + η2(A))/2√
(β − η1(A))(β − η2(A))

,
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when Z1 6∈ A and

(η1(A) + η2(A))/2√
η1(A)η2(A))

,

when Z1 ∈ A. Both quantities are greater than one if and only if (η1(A) − η2(A))2 > 0,
which is always true.

To complete the proof, observe that the function Y achieves its infimum a posteriori for
a subset A∗ such that η∗0(A∗) = x and η∗(A∗) = ϕ(x). Since the prior Y is strictly less
than the posterior one, its prior infimum is lower than the prior Y evaluated at A∗, so it is
lower than the posterior infimum. It follows that the distance is strictly decreasing when
a sample is given. �

Theorem 7.3 We have that, a.s.,

lim
n→∞

dH(P,Q) = 0.

Proof Given a sample Zi and a subset A ∈ A, then δZi(A) can be seen as a Bernoulli
random variable having mean η̃(A), the “true” probability of A (to avoid triviality, we
suppose that 0 < η̃(A) < 1). Because of the strong law of large numbers, it follows that

n∑
i=1

δZi(A)
n

→ η̃(A) a.s.,

so that
∑n

i=1 δZi(A) is unbounded (and similarly n−
∑n

i=1 δZi(A)).
Applying the asymptotic formula presented in Abramowitz and Stegun (1972, p. 257)

given by

Γ(az + b) ∼
√

2πe−az(az)az+b−1/2, z →∞,

it follows that

Y (η1(A) +
n∑
i=1

δZi(A), η2(A) +
n∑
i=1

δZi(A)) ∼ 1 a.s.,

completing the proof. �

Theorem 7.4 We have that

dKL(P ∗, Q∗) < dKL(P,Q),

where P ∗ and Q∗ are the Dirichlet processes obtained by updating the processes P and Q
after observing a sample of size n.

Proof We consider a sample of size 1 because the case n is obtained by reiteratively
applying the proof for the case n = 1. We do not consider the case η1(A) = η2(A), which
gives a null distance, both a priori and a posteriori. We prove, first of all, that

eY (η1(A)+δZ1 (A),η2(A)+δZ1 (A)) < eY (η1(A),η2(A)),
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where

Y (η1(A), η2(A)) =
∫ 1

0
fη1(A)(y) log

(
fη1(A)(y)
fη2(A)(y)

dy

)
.

Such inequality is always satisfied because simple computations show that proving it is
equivalent to proving, when Z1 6∈ A, that

β − η2(A)
β − η1(A)

e(η2(A)−η1(A))/(β−η1(A)) < 1

and, when Z1 ∈ A, that

η2(A)
η1(A)

e(η1(A)−η2(A))/η1(A) < 1.

To complete the proof, observe that the function Y achieves its supremum a posteriori for
a subset A∗ such that η∗0(A∗) = x and η∗(A∗) = ϕ(x). Since the prior Y is strictly greater
than the posterior one, its prior supremum is greater than the prior Y evaluated at A∗. So,
it is greater than the posterior supremum. It follows that the distance is strictly decreasing
whence a sample is given. �

Theorem 7.5 We have that, a.s.,

lim
n→∞

dKL(P,Q) = 0.

Proof Like in the proof of Theorem 7.3, we see that

Y (η1(A) +
n∑
i=1

δZi(A), η2(A) +
n∑
i=1

δZi(A)) = o(1) a.s.

Applying both the same asymptotic formula and the following one:

Ψ(z) ∼ log(z)− 1
2z
−
∞∑
n=1

B2n

2nz2n
, z →∞,

where Bn are the Bernoulli numbers; see Abramowitz and Stegun (1972, p.259). �

8. Discussion

In this paper, we have presented some results about performing sensitivity analysis when
the probability measure is chosen by a Dirichlet process, whose parameter is specified with
uncertainty. Further research could deal with different processes, such as Pólya trees, which
could choose, almost surely, probability measures absolutely continuous with respect to the
Lebesgue measure. Also, different distances between processes could be treated, such as
Prohorov. Finally, the approach taken in this paper could be applied to distributions of
probabilities of finer partitions or random functionals.
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