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Abstract

We discuss inference for repeated fractional data, with outcomes between 0 to 1, includ-
ing positive probability masses on 0 and 1. The point masses at the boundaries prevent
the routine use of logit and other commonly used transformations of (0, 1) data. We
introduce a model augmentation with latent variables that allow for the desired positive
probability at 0 and 1 in the model. A linear mixed effect model is imposed on the latent
variables. We propose a Bayesian semiparametric model for the random effects distribu-
tion. Specifically, we use a Polya tree prior for the unknown random effects distribution.
The proposed model can capture possible multimodality and skewness of random effect
distribution. We discuss implementation of posterior inference by Markov chain Monte
Carlo simulation. The proposed model is illustrated by a simulation study and a cancer
study in dogs.
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· Repeated measurement data · Semiparametric Bayesian inference.
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1. Introduction

Random effects are used to model dependence of repeated measurements on patients or
other experimental units. Random effects can be thought of as unmeasured covariates
whose values can be considered randomly distributed amongst study individuals. For con-
tinuous outcomes with normal errors, Laird and Ware (1982) proposed a normal linear
random effects model. In this model, random effects are assumed to be centered around
the mean regression coefficients for the populations, also known as the fixed effects. Con-
ditional on random effects, repeated observations on a subject are considered indepen-
dent. Goldstein (1986) and Longford (1987) developed a model that incorporates nested
random effects, representing nested group-specific as well as individual-specific sources of
heterogeneity (uncontrolled variation) to be modeled. Gilks et al. (1993) presented a linear
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multiple-random-effects model that simultaneously accommodates group-specific sources
of heterogeneity for several groupings of individuals. They use Gibbs sampling to im-
plement posterior inference. Kleinman and Ibrahim (1998a) described a semiparametric
Bayesian generalization of the normal linear random effect model, where a nonparametric
prior distribution is specified for the random effects.

In this article, we consider the practically important case when the outcome variable
is fraction that is continuous between 0 and 1 plus positive point masses at 0 and 1.
We call such data “fractional data”. Statistical modeling on fractional data of this type
has not been investigated so far for longitudinal or repeated measurement data. Zero-
inflated distributions have been used to model count data (Ridout et al., 1998) but would
not be appropriate here. Fractional data can be seen in the cancer studies. For example,
investigators may study the proportion of hypoxic cells in the cancer micoenvironment
study or the proportion of stained cells in immunochemistry (ICH) studies. Such data
may take the values between 0 and 1.

A standard approach for constrained data is the use of transformations to remove the
constraint, such as a logit or probit transformation. Albert and Chib (1993) propose a
probit regression model for binary and polychotomous outcomes. They impose a normal
regression structure on latent continuous data. Values of the latent data are simulated
from suitable truncated normal distributions. After the latent data have been generated,
the posterior distributions of the parameters are computed using standard results from
normal linear models. Draws from these posteriors are used to sample new latent data. The
process is iterated leading to a Gibbs sampling scheme. For fractional data, however, we
are considering, a complication arises from the fact that 0 and 1 are included in the range
of possible values, with positive probabilities. This complicates the use of conventional
logit or probit transformations.

In this paper, we propose a simulation-based approach to implement posterior infer-
ence for the parameters of interest in a model for fractional data. The key idea is to
introduce additional latent variables to represent the awkward point masses at 0 and 1.
A mixed-effects model is imposed on these latent variables. The model accommodates
individual-specific sources of heterogeneity. We start with standard mixed normal linear
model assumptions, as usual for continuous data, and then extend to a nonparametric
Bayesian model.

The paper is organized as follows. In Section 2 we describe the proposed model for
fractional data. In Section 3 we present the normal prior for the random effects in the
mixed-effect model. In Section 4 we discuss the Polya tree prior for random effects distri-
bution. We present a simulation study in Section 5 and a cancer study in Section 6. We
conclude with a summary discussion in Section 7.

2. Model Formulation on Fractional Data

Suppose that a fractional outcome vector, yi = (yi1, . . . , yini
), yij ∈ [0, 1] with ni repeated

measurements is observed in individual i. Responses yij can also be 0 or 1 with positive
probability. Latent variables zij are introduced to address this data structure by including
point masses at 0 and 1 in the model.

yij =





0, if zij ≤ 0;
zij , if 0 < zij < 1, i = 1, . . . , n, j = 1, . . . , ni;
1, if zij ≥ 1.

(1)

The zij are unknown. The distribution of zij is unconstrained and continuous at 0 and 1.
We can therefore proceed with standard linear mixed model assumptions as is usual for
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continuous data, including normal distribution assumptions. If the application demands,
one can use other functional forms for the latent continuous variable. Let Np(t, S) denote
a p-dimensional normal probability density function with moments (t, S). We construct
the following model for ith individual:

zi = Xiβ + Uiθi + ei, (2)

where β is a p × 1 vector of regression coefficients, commonly called fixed effects. The
matrix Xi is an ni× p design matrix of known covariates for ith individual. Ui is an ni× q
matrix of covariates for the q × 1 random effect vector θi, and ei is an ni × 1 vector of
residuals. We assume that ei and θi are independent and ei ∼ Nni(0, σ2Ini

).
For the distribution of random effects, we initially assume a normal distribution. Later,

we will introduce alternative and generalized models, as and if indicated by model diag-
nostics and criticism. We will assign nonparametric priors to the distribution of random
effects.

The model includes a monotonicity assumption. We assume that P(yij = 1) increases as
the mean of subdensity p(yij |0 < yij < 1) increases. We make an analogous assumption for
P(yij = 0). We feel this is reasonable in most applications. For example, in an application
with yij being the fraction of stained cells in immunohistochemistry data, it is reasonable
to assume that the probability of all cells being stained (i.e., yij = 1) increases as the
average fraction of stained cells rises.

3. Normal Linear Random Effect Model

The linear model given in Equation (2) defines the top level sampling model. Without
loss of generality we assume conditional independence within experimental units (e.g.,
dogs), that is, a diagonal variance-covariance matrix. Little would change in the following
discussion if we were to assume a non-diagonal variance-covariance matrix.

3.1 Prior specification

We complete the model with conjugate priors. For the fixed effects, we assume a conjugate
multivariate normal prior

β ∼ Np(µ0,Σ0). (3)

Random effects are assumed to arise from the normal random effects model given by

θi
iid∼ Nq(0, Σθ).

The prior on the residual variance is specified as

τ = (σ2)−1 ∼ Ga
(

γ0

2
,
λ0

2

)
, (4)

where Ga(a, b) denotes a gamma distribution with mean a/b and variance a/b2. The conju-
gate priors of Equation (3) through Equation (4) are chosen for technical convenience. Sub-
stantial prior information might require different prior distributions. Finally, µ0, Σ0,Σθ, γ0,
and λ0 are fixed hyperparameters.
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3.2 Posterior inference

We implement posterior simulation by Gibbs sampling, resampling each of the indicated
parameters conditional on the currently imputed values of all other parameters and the
data. We did not use analytic forms because:

(i) All priors are only conditionally conjugate. They are not conjugate for the joint
posterior distribution;

(ii) Sampling one parameter at a time avoids manipulating an excessively large design
matrix;

(iii) Additionally, data are truncated by 0 and 1, which breaks joint conjugacy. More-
over, the normal linear mixed model is assumed on z, not on y.

Resampling z Conditional on other parameters, resampling the latent variable z requires
truncated normal sampling. From Equations (1) and (2), we find

zij





∼ N(Xijβ + Uijθi, σ
2)I(zij ≤ 0), if yij = 0;

= yij , if 0 < yij < 1;
∼ N(Xijβ + Uijθi, σ

2)I(zij ≥ 1), if yij = 1;
(5)

where Xij and Uij are the jth row of matrices Xi and Ui, respectively. Generating random
samples from a truncated normal is straightforward. Gelfand et al. (1990) provided an
algorithm for sampling from truncated normal distribution.

Resampling β We proceed as in a standard normal linear regression. Equation (2) can be
re-written as

zi − Uiθi︸ ︷︷ ︸
z?

i

= Xiβ + ei.

Thus conditional on other parameters, z?
i ∼ N(Xiβ, τ−1). Conditioning on zi and θi, i =

1, . . . , n, and combining with the conjugate prior in Equation (3), we find p(β| . . .) =
N(µβ, vβ) with moments vβ = (Σ−1

0 + τ
∑

i X
′
iXi)−1 and µβ = vβ(Σ−1

0 µ0 + τ
∑

i X
′
iz

?
i ).

We implement Gibbs sampling posterior simulation by iterating over the complete condi-
tional posterior distributions given in the above expressions, starting with initial values for
β, θi, i = 1, . . . , n, and τ . For later reference, we summarize the Gibbs sampling algorithm:

(i) Generate z using Equation (5).

(ii) Draw β ∼ p(β| . . .) from the multivariate normal distribution N(µβ, vβ).

(iii) Draw τ ∼ p(τ | . . .) from the inverse gamma conditional posterior distribution.

(iv) For i = 1, . . . , n, under model (1) through Equation (2), θi ∼ p(θi| . . .) can be easily
generated from a normal distribution.

Ergodic averages over the simulated parameter values approximate posterior integrals,
including posterior means, posterior predictive distributions, etc. Geweke’s test (Geweke,
1992) could be used to verify the convergence of the simulations.
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4. Polya Tree Random Prior for the Random Effect Distribution

The normal assumption on the random effects distribution can be restrictive. It is pos-
sible for the distribution of random effects to be multimodal and/or with unpredictable
types of skewness. In biomedical data, multimodality frequently arises from patient hetero-
geneity, presence of outliers, exclusion of unknown but important covariates, alternative
biologic mechanisms, etc. Examples of heterogenous populations include adult vs. pedi-
atric populations, invasive vs. non-invasive tumors, strokes arising from bursting blood
vessels vs. blocked vessels, and so forth. For accurate accounting of uncertainties and for
improved prediction, it is clearly critical to account for such heterogeneity. Also, the na-
ture of the heterogeneity might be of interest in itself, as, for example, in the discovery of
new (sub-) types of cancer. We achieve the desired generalization with a nonparametric
Bayesian model.

A commonly used technical definition of nonparametric Bayesian models is probability
models with infinitely many parameters (Bernardo and Smith, 1994). In other words, a
nonparametric Bayesian model is a probability model on a function space. Nonparametric
Bayesian models are used to avoid critical dependence on parametric assumptions, to make
parametric models more robust, and to define model diagnostics and sensitivity analysis
for parametric models by embedding them in a larger encompassing nonparametric model
(Müller and Quintana, 2004). Bayesian nonparametric and semiparametric approaches in-
clude mixture models (West, 1992), Dirichlet process and Dirichlet process mixture models
(Ferguson, 1973; Antoniak, 1974; Escobar and West, 1995; MacEachern and Müller, 1998),
and Polya tree priors (Lavine, 1992, 1994). For a recent review of nonparametric Bayesian
models, see Walker et al. (1999).

In this section, we will explore the Polya tree model as a prior for the random effects
distribution in models (1) and (2). Polya trees were proposed as a generalization of Dirichlet
process in Bayesian data analysis by Lavine (1992, 1994). The definition, properties, and
construction of Polya trees can be found in Appendix.

A random probability measure G, which is said to have a Polya tree distribution, or a
Polya tree prior, with parameter (Π,A), is written as G ∼ PT(Π,A). The set Π determines
the partition structure of the Polya tree. The parameters αε inA determine the smoothness
of a realization of G and control how quickly the posterior predictive distribution moves
from its prior mean to the empirical distribution.

4.1 Posterior predictive simulation

The joint marginal distribution of a sample (X1, . . . , Xn) generated from a random distri-
bution with a Polya tree prior has a closed form. The random probability measure G can
analytically be integrated out. Suppose xi

iid∼ G, i = 1, . . . , n and G ∼ PT(Π,A). Let g be
the density function of G and g0 be the density function of the centering distribution G0

such that E(G) = G0 (See the appendix for the choice of g0). The marginal joint density
of (X1, . . . , Xn) is given by

p(x1, . . . , xn) =
∫

p(x1, . . . , xn|G)dp(G)

=
∫ n∏

i=1

g(xi)dp(G)

= f(x1)
n∏

i=2

f(xi|x1, . . . , xi−1),
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where f(x1) = g0(x1) and

f(xi|x1, . . . , xi−1) = g0(xi) lim
M→∞

M∏

m=2

α′εm
(αεm−10

+ αεm−11
)

αεm
(α′εm−10

+ α′εm−11
)
, (6)

where εm = ε1, . . . , εm identifies the level m subset containing xi, i.e., xi ∈ Bε1,...,εm
. Here

α′εm
is equal to αεm

plus the number of observations among x1, . . . , xi−1 that belong to
Bε1,...,εm

.
In practice, we can always reduce the right side of Equation (6) to a finite product.

Starting at a sufficiently large level Mxi
, the sets Bε1,...,εm

, m ≥ Mxi
, contain no data

points x1, . . . , xi−1 and thus α′εm
= αεm

, reducing the product to M = 2, . . . , Mxi
. Also for

any fixed M , the right side of Equation (6) can be approximated by a finite product when
M is large.

4.2 A semiparametric model for repeated fractional data

In this section, we improve on certain aspects of the normal linear mixed effect model
introduced earlier. In particular, we discuss posterior inference for a model that assumes
a Polya tree prior for an unknown random effect distribution. The Polya tree prior is
centered around a parametric probability distribution. With this approach, random effects
can be directly sampled and inference will be based on the predictive density.

As before, let the observed outcome be yij and assume that the distribution of the latent
variable zij for the jth measurement from ith individual follows models (1) and (2). Given
β and θi, zi is normally distributed. The prior specification in a conjugate model for β and
τ are the same as before, namely, Equations (3) and (4), respectively.

The random effect model is generalized by assuming a nonparametric random effect
prior. That is,

θi
iid∼ G, G ∼ PT(Π,A).

We center the Polya tree distribution around a normal distribution G0 with median
(mean) 0 and a fixed large variance σ2

θ (i.e. G0 = N(0, σ2
θ)). A fixed partition at level m is

generated by taking

Bε1,...,εm
=

(
G−1

0

(
j

2m

)
, G−1

0

(
j + 1
2m

)]
,

where j = 0, 1, . . . , 2m − 1. A is assumed as

A = {αε1,...,εm
= cm2 : ε1, . . . , εm ∈ {0, 1}m},

with a pre-specified value of c.
To implement Gibbs sampling posterior simulation, we need to generate from the

conditional posterior distribution as in Section 3.2. The relevant full conditional poste-
rior distributions include p(β|z, θ, σ2), p(σ2|z, β, θ), and p(θi|z, θ−i, β, σ2), where θ−i =
(θ1, . . . , θi−1, θi+1, . . . , θn), i = 1, . . . , n. Samples can be obtained using an MCMC algo-
rithm and in particular a Metropolis-Hastings within Gibbs methods.

Conditional on β and the θi’s, zij can be generated by Equation (5) as before. Similarly,
β can be sampled from N(µβ, vβ) given z, θ = (θ1, . . . , θn), and σ2. The full conditional
posterior distribution for τ is easily found to be an inverse gamma distribution, allowing
random variable generation.
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Now we describe how to update θ. Let zi = (zij , j = 1, . . . , ni). The likelihood for θi,
given z, σ2, β, and θ−i, is given by

l(zi|β, θi, θ−i, σ
2) =

ni∏

j=1

N(zij |β, θi, σ
2).

The conditional posterior distribution for θi can be written, up to a constant of propor-
tionality, as

p(θi|z, θ−i, β, σ2) ∝ l(zi | β, θi, σ
2)p(θi|θ−i), (7)

for each i = 1, . . . , n. This motives the following Metropolis-Hastings transition probability.
A proposed value θ

(p)
i is generated from the prior predictive distribution p(θi|θ−i). The

prior predictive can be written as

θ
(p)
i ∼ p(θi|θ−i) =

∫
G(θ(p))dp(G | θ−i) with p(G | θ−i) = PT(A?, Π),

using the posterior PT, conditional on θ−i, with A? = {α?
ε = αε + nε}. Here nε =∑

h6=i I(θh ∈ Bε) counts the number of θh, h 6= i, that fall into the partitioning subset
Bε.

We proceed as follows to generate θ
(p)
i . Recall the definition of Yε as the random splitting

probabilities in the constructive definition of the PT. Starting with Y0, we generate the
sequence of random probabilities for G ∼ PT(A?, Π), and set ε0 = 0 with probability Y0,
etc. We continue generating random probabilities Yε0,...,εm

and εm until we reach a level m
with α?

ε0,...,εm
= αε0,...,εm

, i.e., until we reach a partitioning subset Bε0,...,εm
that does not

contain any of the currently imputed random effects θh, h 6= i. Finally, we generate θ
(p)
i

from the base measure G0 restricted to this set Bε0,...,εm
. This generates θ

(p)
i ∼ p(θi|θ−i).

The Markov chain moves to the candidate point θ
(p)
i with probability

min

{
1,

l(zi|β, θ
(p)
i , σ2)

l(zi | β, θ
(c)
i , σ2)

}
,

where θ
(c)
i is the current sample.

5. A Simulation Study

In this section, we fit a mixed fractional data model to simulated data. Normal and Polya
tree priors are considered as priors of the distributions of random effects, and we compare
the resulting inference. We simulated n = 100 random effects from

θi
iid∼ 0.5N(−0.2, 0.152) + 0.5N(0.2, 0.152), i = 1, . . . , n.

We introduce one covariate, Xij
iid∼ N(0.5, 0.32), i = 1, . . . , n, j = 1, 2. The simulation truth

for the regression coefficient was set at β = (β0, β1) = (0.8,−0.6), and the random residual
e was generated from N(0, 0.12). Let zij = β0 + Xijβ1 + θi + eij , i = 1, . . . , n, j = 1, 2. The
observed fractional data are recorded as yij = 1 if zij ≥ 1; yij = zij if 0 < zij < 1; and
yij = 0 if zij ≤ 0.
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The histogram of the observed data y is displayed in Figure 1. From this figure, note the
point masses at the boundaries. We analyze the data using model (1) through Equations
(3) and (4), with zij = β0 + Xijβ1 + θi + eij , and random effects θi

iid∼ G, and residuals

eij
iid∼ N(0, σ2), i = 1, . . . , n, j = 1, 2.

 

y

 

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

Figure 1. Histogram of y.

Assuming a flat normal prior on β = (β0, β1), and β ∼ N2((0, 0), 100I2), the random
effects distribution is modeled by the following two different approaches.

The distribution of the random effect θ is first modeled with normal distribution, that
is, G(θ) = N(0, σ2

θ) with a hyper-prior 1/σ2
θ ∼ Ga(0.01, 0.01). We carry out the posterior

simulation as described in Section 3.2. The MCMC simulation was repeated 20,000 times.
The first 5,000 iterations were discarded as burn-in. The point estimates and 95% posterior
intervals of β and selected random effects are presented in Table 1. Figure 2(a) shows the
posterior predictive density for ynew,1 under normal random effect prior when Xnew,1 takes
the average of all observed X’s. It shows normal appearance but does not capture the
bimodal feature in the data, which suggests that a normal random effects prior is not
appropriate in this example.

We specify a Polya tree prior for the random effect distribution to allow for multimodal-
ity. Priors for other parameters remain unchanged.

We construct the Polya tree prior with a Polya tree centered around N(0, 52). At the
mth partition level, αε1,...,εm

is taken to be cm2, with c fixed at 0.1. Posterior simulation
was run for 25,000 iterations, with the first 5,000 being discarded as burn-in period. Every
20th iteration was saved. Posterior summary statistics for the estimated parameters are
presented in Table 1. The point estimates for β0 and β1 are fairly close to the simulation
truth. Figure 2(b) shows the posterior predictive density for ynew,1 under the Polya tree
prior for the random effects distribution. It demonstrates the bimodal feature in the data.
The posterior predictive density of θn+1 is plotted in Figure 2(c). It shows that inference
on G captures the bimodal nature of random effect distribution very well.

As expected, point estimates of the fixed effects are similar for both models. Posterior
intervals for β1 are wider under the Polya tree priors. The increased posterior uncertainty
under the Polya tree random effects model is due to the additional randomness in the later
model.

The posterior medians for two θi, shown in Table 1, are slightly different under the two
models. This is to be expected. The semiparametric model allows multiple shrinkage. Under
the normal model, all estimates for θj are shrunk towards the common mean, E(θj) = 0.
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Figure 2. (a) Predictive density of ynew,1 under normal random effect distribution, (b) Predictive density of ynew,1

under PT prior for random effects distribution (note the bimodal feature) and (c) Estimated random effect distri-
bution Ḡ = E(G|z) (dashed line) vs. the simulation truth (solid line)
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Table 1. Posterior 2.5%th, 50%th, and 97.5%th percentiles for selected parameters under semiparametric
and the parametric normal random effects model. β0 is the intercept, β1 is the fixed effect, and σ is the
residual standard deviation. θi is random effect for ith subject.

Parameter Normal prior Polya tree prior (c = 0.1)
β0 0.830(0.768, 0.890) 0.847(0.723, 0.943)
β1 -0596(-0.659, -0.534) -0.599(-0.661, -0.533)
σ 0.093(0.080, 0.108) 0.093(0.081, 0.109)

θ69 0.272(0.133, 0.401) 0.259(0.085, 0.396)
θ99 -0.200(-0.338, -0.051) -0.219(-0.378, -0.039)
σθ 0.247(0.194, 0.350)

6. Application

In cancer studies, some characteristics of the tumor microenvironment are often assessed
by histologic evaluation of tumor biopsies. These include oxygenation and proliferation,
two important features of the tumor environment that may influence the response to treat-
ment. One approach to measure tumor oxygenation is to measure bound nitroimidazoles
based on information from tumor biopsies. The accuracy of biopsy-based methods, how-
ever, is related to how precisely the information derived from the biopsies represents the
overall tumor microenvironment. Thrall et al. (1997) studied binding of CCI-103F and
pimonidazole, both 2-nitroimidazole compounds, in canine solid tumors to assess pretreat-
ment oxygenation and changes in oxygenation during irradiation.

The study reports data for n = 9 dogs, each with a primary solid tumor. Twenty-
four hours before the first radiation treatment, CCI-103F was administered intravenously.
Immediately prior to the first radiation treatment, up to eight biopsies were obtained from
different geographic regions of the tumor. One to four sections from each biopsy sample
were placed on glass slides. Slides from four out of eight biopsies were measured 20 minutes
after injecting the dye. Slides from the rest of biopsies in the same tumor were measured
24 hours after injecting the dye. The volume fraction of hypoxic tumor tissue was reported
by measuring the CCI-103F labelled area in each slide. Responses are recorded as

y =
(CCI− 103F labelled counts)

(CCI− 103F labelled counts) + (unlabelled counts)
.

An important feature of the data is that the volume fraction of hypoxic tumor tissue can
be 0 or 1 in some slides. Raw cell counts are not reported, only the fraction y, resulting
in the fractional data format discussed earlier. The questions of interest include: “What
is the average fraction of hypoxic cells in a tumor”; “How variable is the fraction within
a tumor and between dogs?”; and “How is the measurement of hypoxic cells in the same
tumor affected by different measuring times?”.

Figure 3 presents the average fraction of hypoxic cells in each biopsy for each dog. The x-
axis denotes the biopsy label. Biopsies labelled as 1, 2, 3, and 4 were measured 20 minutes
after injecting the dye. The fraction of hypoxic cells from biopsies labelled as 5, 6, 7, and
8 were measured 24 hours after injecting the dye.

We use conventional Bayesian and Bayesian semiparametric random effect models to fit
the above fractional data. Let yijk denote the fraction of hypoxic cells in kth slide from jth
biopsy of ith dog. Time tij is the measurement time for the jth biopsy from the ith dog, vi

is the volume of tumor from the ith dog, di denotes a random dog effect and bj(i) a random
biopsy effect nested within the ith dog. To include point mass probabilities for yijk = 0



Chilean Journal of Statistics 69

biopsy

M
ea

n 
pr

op
. o

f h
yp

ox
ic

 c
el

ls

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8

dog 1
dog 2
dog 3
dog 4
dog 5
dog 6
dog 7
dog 8
dog 9

Figure 3. Average fraction of hypoxic cells in each biopsy for each dog.

and yijk = 1, we introduce a latent variable zijk into the model. As in Equation (1):

yijk =





0, if zijk ≤ 0;
zijk, if 0 < zijk < 1;
1, if zijk ≥ 1.

The mixed-effects model (2) becomes zijk = β0+β1tij +β2vi+di+bj(i)+εijk, with residuals

εijk
iid∼ N(0, σ2), i = 1, . . . , 9, j = 1, . . . , 8, k = 1, . . . , 4.

The model is completed with conjugate priors: β = (β0, β1, β2) ∼ N(0, 4I3), di
iid∼

N(0, σ2
d), and a random effect distribution for the biopsy effects: bj(i)

iid∼ F . As hyper
priors, we assume 1/σ2

d ∼ Ga(0.01, 0.01) and 1/σ2 ∼ Ga(0.01, 0.01).
Because of the small number of dogs, the distribution of random dog effect is assumed

to be normal. Two types of random effects distributions are considered for the distribution
of biopsy effect. First, a normal prior F = N(0, σ2

b ) is specified. From other studies, we
expect more variability within tumors than between subject-specific averages. Then the
parametric prior assumption is relaxed by specifying a nonparametric Polya tree prior,
i.e., F ∼ PT(Π,A).

6.1 Normal prior for the biopsy effect

Assume bj(i)
iid∼ N(0, σ2

b ) and 1/σ2
b ∼ Ga(0.01, 0.01). We ran the Gibbs sampler over 35,000

iterations, with the first 5,000 being discarded as a burn-in period. In addition, because of
high autocorrelation, only every 12th iteration was saved and the rest discarded, leading
to a total Monte Carlo sample size of 2,500.

The histogram of posterior mean estimated biopsy effects is presented in Figure 4. The
distribution of biopsy effects does not show normal appearance. The non-normality may
be due to heterogeneity across dogs, or biopsies, or other covariates that are not recorded.

Posterior estimates of model parameters are summarized in Table 2. The results indi-
cate that the proportion of hypoxic cells is strongly related to time but not significantly
associated with tumor volume.
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Figure 4. Histogram of mean biopsy effects under the parametric model.

6.2 Polya tree prior for the biopsy effect

Suppose the biopsy effect arises from a random probability measure F , and we assume a
Polya tree prior for F . We use a Polya tree with centering distribution F0 = N(0, 32). We
place the same priors on fixed effects and random dog effects as before. The parameters of
the Polya tree prior are fixed as follows. The partitioning points to define Π are chosen to
be the percentiles of F0, and c is set to 0.1.

Posterior simulation was run for 38,000 iterations, with the first 4,000 being discarded as
burn-in period. Every 20th iteration was saved. Convergence of the posterior distributions
of parameters was assessed using Geweke’s method. The parameter estimates are presented
in Table 2. Note that the time effect is no longer significant under the Polya tree prior.

The posterior mean of F is shown in Figure 5, which indicates high between-biopsy
variability. The posterior mean is centered around 0, as we would expect.
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Figure 5. Estimated random biopsy effect distribution F̄ = E(F |z).
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Table 2. Posterior median and central 95% posterior intervals for various parameters from the parametric
normal model and Polya tree model. Here, β0 is the intercept, β1 is the slope over time, β2 is the volume
of tumor effect, σ is the error standard deviation, σd is the standard deviation of dog effect, and σb is the
standard deviation of biopsy.

Parameter Normal model Polya tree model
β0 0.303(0.127, 0.507) 0.347(0.173, 0.553)
β1 0.113(0.019, 0.212) 0.054(-0.051, 0.169)
β2 -0.001(-0.003, 0.003) -0.001(-0.003, 0.002)
σ 0.093(0.085, 0.103) 0.093(0.085, 0.102)
σd 0.252(0.154, 0.527) 0.263(0.158, 0.510)
σb 0.197(0.163, 0.241)

7. Discussion

We have proposed Bayesian nonparametric modeling for a class of important inference
problems arising in biomedical data analysis. We developed a model and corresponding
inference for repeated fractional data model. Proposed techniques included specifying a
nonparametric Polya tree prior for the random effects distribution. We provided appropri-
ate posterior simulation schemes.

In the fractional data model, Polya tree priors avoid assuming a specific parametric
distribution for random effects. This allows us to estimate the distribution of random
effects, which provides insight into population heterogeneity and honestly accounts for
related uncertainties.

Polya trees have some practical limitations, however. First, the resulting random prob-
ability measure depends on the specific partition sequence adopted. Second, using a fixed
partitioning sequence Π results in discontinuities in the predictive distributions. Third,
implementations for higher dimensional distributions require extensive housekeeping and
are impractical.

Paddock et al. (2003) and Hanson and Johnson (2002) introduced randomized Polya
trees to mitigate problems related to the discontinuities. The idea is based on dyadic
rational partitions, but instead of taking the nominal half-point, Paddock et al. (2003)
randomly chose a cutoff centered around the cutoff point. This construction is shown to
mitigate the first two limitations noted above. Hanson and Johnson (2002) consider a
mixture with respect to a hyperparameter that defines the partitioning tree. A prior was
placed on the spread of the prior distribution of G, which can be learned from the data.
Doing so eliminates the need to choose a centering distribution with adequate spread in
ad hoc way.

In the fractional data discussed in the paper, the fractional response outcome was mea-
sured at two time points. In other applications the fractional measurements might be
obtained from the same biopsy or sample at more than two time points, or the measure-
ment might be made at several time points per cycle for multiple cycles for each subject.
The proposed model can be generalized to incorporate the additional random effects, such
as nested cycle effect, which is a topic of future research.
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Appendix

A.1 Definition and Basic Properties of Polya Trees

Let E = [0, 1],E0 = ∅, Em be the m-fold product E×E×· · ·×E, E? =
⋃∞

m=0 Em and EN

be the set of infinite sequences of elements of E. Let Ω be a separable measurable space,
π0 = Ω and Π = {πm; m = 0, 1, . . .} be a separating binary tree of partitions of Ω; that is,
let π0, π1, . . . be a sequence of partitions such that

⋃∞
m=0 πm generates the measurable sets

and such that every B ∈ πm+1 is obtained by splitting some B′ ∈ πm into two subsets. Let
B0 = Ω and, for all ε = ε1, . . . , εm ∈ E?, let Bε0 and Bε1 be the two subsets into which Bε

is split.

Definition 7.1 [Lavine (1992)] A random probability measure G is said to have a
Polya tree distribution, or a Polya tree prior, with parameter (Π,A), written as G ∼
PT(Π,A), if there exist non-negative numbers A = (α0, α1, α00, . . .) and random variables
Y = (Y0, Y1, Y00, . . .) such that all random variables in Y are independent; for every ε,
(Yε0, Yε1) ∼ Beta(αε0, αε1); and for every m = 1, 2, . . ., and every ε = ε1, . . . , εm,

G(Bε1,...,εm
) =




m∏

j=1,εj=0

Yε1,...,εj−10







m∏

j=1,εj=1

(1− Yε1,...,εj−10)




where the first term, i.e. for j = 1, is interpreted as Y0 or 1− Y0.

The random variable Yε0 is the conditional probability of partition subset Bε0 given Bε.
For instance, for m = 2, G(B00) = Y0Y00, G(B01) = Y0(1−Y00), G(B10) = (1−Y0)Y10, and
G(B11) = (1−Y0)(1−Y10). The set Π determines the partition structure of the Polya tree.
The parameters αε in A determine the smoothness of a realization of G and control how
quickly the posterior predictive distribution moves from its prior mean to the empirical
distribution.

Several properties facilitate the use of the Polya tree for nonparametric Bayesian infer-
ence. Polya trees are conjugate under i.i.d sampling. Assume p(G|Π,A) = PT(Π,A) and
xi

iid∼ G, i = 1, . . . , n. Then p(G|x,Π,A) = PT(Π,A?). The parameters αε are updated
by adding the count of points in Bε, i.e., A? = {α?

ε = αε + nε : ε ∈ E?} and nε = the
number of xi’s in Bε. In words, the posterior distribution of G under i.i.d sampling is
also Polya tree with the same fixed partition sequence. The partitioning probability (Yε)
is generated from beta distribution with updated parameters α?

ε, where α?
ε is equal to αε

plus the number of x1, . . . , xn in subset Bε.
The Polya tree includes the Dirichlet process as a special case. A Polya tree is a Dirichlet

process if αε = αε0 + αε1 for every ε ∈ E? (Ferguson, 1974).
The parameters of a Polya tree can be chosen such that G is absolutely continuous with

probability 1. In particular, any αε1,...,εm
= ρ(m) such that

∑∞
m=1 ρ(m)−1 < ∞ guarantees

G to be absolutely continuous. For example, Walker and Mallick (1999) and Paddock et
al. (2003) consider αε1,...,εm

= cm2, where c > 0.

A.2. Construction of a polya tree

Two parameters specify a Polya tree prior, the partition Π and the setA. Through choosing
Π, we may center the Polya tree prior around a particular continuous distribution G0.
To do so, we take the partition points to align with percentiles of G0. For instance, if
B0 = (−∞, G−1

0

(
1
2

)
] (hence B1 = (G−1

0

(
1
2

)
,∞)), B00 = (−∞, G−1

0

(
1
4

)
], . . . and α0 = α1,

α00 = α01, . . ., then since G(B0) = Y0 ∼ Be(α0, α1), E(G(B0)) = 1
2 = G0(B0). Also, e.g.,

G(B00) = Y0Y00 implies E(G(B00)) = 1
4 = G0(B00) and for any B ∈ Π, E(G(B)) = G0(B).
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We need not confine ourselves to quartiles of the form G−1
0

(
j
2r

)
.

Figure 6 shows an example of the construction of a Polya tree prior on (0, 1] = Ω
(Ferguson, 1974). At the top level of the tree, Ω is split in half at the dyadic rational,
0.5. Thus B0 = (0, 0.5], B1 = (0.5, 1] and Ω = B0

⋃
B1. At the second level, B0 and

B1 are again split at 0.25 and 0.75, respectively, which result in subsets B00 = (0, 0.25],
B01 = (0.25, 0.5], B10 = (0.5, 0.75], and B11 = (0.75, 1], so on.

1/8 3/8 5/8 7/8

1/4 3/4

1/2

Y0 Y1

Y00 Y01 Y10 Y11

Figure 6. Construction of a Polya tree prior on (0,1] (Ferguson, 1974)

One also has to choose the parameters in A. The parameters αε in A control how
quickly the updated predictive distribution moves from the centering distribution G0 to the
empirical distribution. If the αε’s are large, then the distribution of xn+1|x1, . . . , xn is close
to G0. If the αε’s are small, then the distribution of xn+1|x1, . . . , xn is close to the empirical
distribution function. The parameters αε also express the belief about the smoothness of
G. Ferguson (1974) provides conditions on A which yield discrete, continuous singular,
and absolutely continuous distributions with probability one. For instance, for level m =
1, 2, . . ., αε1,...,εm

= 2−m implies a Dirichlet process,αε = 1 yields a random probability G
of a type considered by Dubins and Freedman (1966) and shown to be continuous singular
with probability one, and αε1...εm

= m2 implies an absolutely continuous distribution with
probability 1. Walker and Mallick (1999) and Paddock et al. (2003) considered αε1,...,εm

=
cm2, where c > 0.

Therefore, through selection of A and G0, one can center the Polya tree prior around
G0 arbitrarily close, as determined by A, in a manner analogous to the specification of
baseline measure and precision parameter in the Dirichlet process. A can be thought of as
a precision parameter and G0 as a base measure.
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